MODERN UNDERSTANDING OF THE STRUCTURE OF SKIN MICROBIOTA IN VARIOUS DERMATOSES


Cite item

Full Text

Abstract

The skin ecosystem (microbiome) is a complex environment represented by a diverse community of microorganisms with various mechanisms of interaction with each other and the epidermis. The structure of colonization varies depending on the localization on the skin and environmental changes. There is a complex mechanism of the indirect influence of microorganisms through Toll-like receptors (TLR2) in the skin on the activation of the cascade of reactions leading to the production of antimicrobial peptides. This is the basis for the development of chronic inflammation, provoking mechanisms of carcinogenesis in skin cells. The mechanisms of influence of the commensal flora on the skin condition, the change in its regenerative capabilities have been little studied. Modern ideas about the importance of skin microbiota in the mechanisms of development of frequently occurring dermatoses are presented.

About the authors

Ekaterina V. Orlova

I. M. Sechenov First Moscow State Medical University (Sechenov University)

Email: orlovaderm@yandex.ru
Department of Dermatology and Venereology Moscow, 119991, Russian Federation

A. S Zybareva

Pirogov Russian National Research Medical University Moscow

117997, Russian Federation

L. M Smirnova

I. M. Sechenov First Moscow State Medical University (Sechenov University)

Department of Dermatology and Venereology Moscow, 119991, Russian Federation

L. N Kayumova

I. M. Sechenov First Moscow State Medical University (Sechenov University)

Department of Dermatology and Venereology Moscow, 119991, Russian Federation

D. M Martynenko

I. M. Sechenov First Moscow State Medical University (Sechenov University)

Department of Dermatology and Venereology Moscow, 119991, Russian Federation

References

  1. Lai Y., Cogen A.L., Radek K.A., Park H.J., Macleod D.T., Leichtle A., et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J. Invest. Dermatol. 2010; 130(9): 2211-21.
  2. Wang Z., MacLeod D.T., Di Nardo A. Commensal bacteria lipoteichoic acid increases skin mast cell antimicrobial activity against vaccinia viruses. J. Immunol. 2012; 189(4): 1551-8.
  3. Li D., Lei H., Li Z., Li H., Wang Y., Lai Y. A novel lipopeptide from skin commensal activates TLR2/CD36-p38 MAPK signaling to increase antibacterial defense against bacterial infection. PLoS One 2013; 8(3): e58288. doi: 10.1371/journal.pone.0058288
  4. Shu M., Wang Y., Yu J., Kuo S., Coda A., Jiang Y., et al. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One. 2013; 8(2): e55380.
  5. Elias P.M. The skin barrier as an innate immune element. Semin. Immunopathol. 2007; 29(1): 3-14.
  6. Cancer Facts and Figures 2017. American Cancer Society. http://www. cancer.org/acs/groups/content/@editorial/documents/document/ acspc-048738.pdf. Accessed May 13, 2017.
  7. D’Orazio J., Jarrett S., Amaro-Ortiz A., Scott T. UV radiation and the skin. Int. J. Mol. Sci. 2013; 14(6): 12222-48.
  8. Iwase T., Uehara Y., Shinji H., Tajima A., Seo H., Takada K., et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010; 465(7296): 346-9.
  9. Siegel R., Ma J., Zou Z., Jemal A. Cancer statistics, 2014. CA Cancer J. Clin. 2014; 64(1): 9-29.
  10. Krutmann J. Pre- and probiotics for human skin. J. Dermatol. Sci. 2009; 54(1): 1-5.
  11. Gallimore A.M., Simon A.K. Positive and negative influences of regulatory T cells on tumour immunity. Oncogene. 2008; 27(45): 5886-93.
  12. Nakatsuji T., Chen T.H., Butcher A.M., Trzoss L.L., Nam S.J., Shirakawa K.T., et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci. Advances. 2018; 4(2), eaao4502. https://advances.sciencemag.org/content/4/2/eaao4502
  13. Balter M. Taking stock of the human micribiome and disease. Science. 2012; 336(6086): 1246-7.
  14. Sanford J.A., Gallo R.L. Functions of the skin microbiota in health and disease. Semin. Immunol. 2013; 25(5): 370-7.
  15. Di Domizio J., Pagnoni A., Huber M., Hohl D., Gilliet M. The skin microbiota: a colossus steps into the spotlight. Rev. Med. Suisse. 2016; 12(512): 660-4.
  16. von Hertzen L.C., Joensuu H., Haahtela T. Microbial deprivation, inflammation and cancer. Cancer Metastasis Rev. 2011; 30(2): 211-23.
  17. Gallimore A.M., Simon A.K. Positive and negative influences of regulatory T cells on tumour immunity. Oncogene. 2008; 27(45): 5886-93.
  18. Afzali B., Lombardi G., Lechler R.I., Lord G.M. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune diseases. Clin. Exp. Immunol. 2007; 148(1): 32-46.
  19. Yu Y., Champer J., Beynet D., Kim J., Friedman A.J. The role of the cutaneous microbiome in skin cancer: lessons learned from the gut. J. Drugs Dermatol. 2015; 14(5): 461-5.
  20. Chen A.C., McMillan, N.A., Antonsson A. Human papillomavirus type spectrum in normal skin of individuals with or without a history of frequent sun exposure. J. Gen. Virol. 2008; 89(Pt 11): 2891-7. doi: 10.1099/vir.0.2008/003665-0
  21. Foulongne V., Sauvage V., Hebert C., Dereure O., Cheval J., Gouilh M.A., et al. Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS One. 2012; 7(6): e38499. doi: 10.1371/journal.pone.0038499
  22. Ma Y., Madupu R., Karaoz U., Nossa C.W., Yang L., Yooseph S., et al. Human papillomavirus community in healthy persons, defined by metagenomics analysis of human microbiome project shotgun sequencing data sets. J. Virol. 2014; 88(9): 4786-97.
  23. Majewski S., Jablonska S. Human papillomavirus-associated tumors of the skin and mucosa. J. Am. Acad. Dermatol. 1997; 36(5, Pt 1): 659-85.
  24. Hardie I.R. Skin cancer in transplant recipients. Transplant. Rev. 1995; 9(1):1-16.
  25. Jackson S., Storey A. E6 proteins from diverse cutaneous HPV types inhibit apoptosis in response to UV damage. Oncogene. 2000; 19(4): 592-8.
  26. Bouwes Bavinck J.N., Feltkamp M., Struijk L., ter Schegget J. Human papillomavirus infection and skin cancer risk in organ transplant recipients. J. Investig. Dermatol. Symp. Proc. 2001; 6(3): 207-11.
  27. Harwood C.A., Surentheran T., Sasieni P., Proby C.M., Bordea C., Leigh I.M., et al. Increased risk of skin cancer associated with the presence of epidermodysplasia verruciformis human papillomavirus types in normal skin. Br. J. Dermatol. 2004; 150(5): 949-57.
  28. Кладова А.Ю., Куевда Д.А., Молочков В.А., Шипулина О.Ю., Киселев В.И., Хлебникова А.Н., Козлова Е.С. Встречаемость кожных видов вируса папилломы человека в патологиях кожи. Альманах клинической медицины. 2006; 9: 44-50.
  29. Lucas R.M., Gorman S., Geldenhuys S., Hart P.H. Vitamin D and immunity. F1000Prime Rep. 2014; 6: 118. doi: 10.12703/P6-118.
  30. Lee C.H., Wu S.B., Hong C.H., Yu H.S., Wei Y.H. Molecular mechanisms of UV-induced apoptosis and its effects on skin residential cells: the implication in UV-based phototherapy. Int. J. Mol. Sci. 2013; 14(3): 6414-35.
  31. Phan T.A., Halliday G.M., Barnetson R.S., Damian D.L. Spectral and dose dependence of ultraviolet radiation-induced immunosuppression. Front Biosci. 2006; 11: 394-411.
  32. Schwarz T. 25 years of UV-induced immunosuppression mediated by T-cells from disregarded T suppressor cells to highly respected regulatory T cells. Photochem Photobiol. 2008; 84(1): 10-8.
  33. Hart P.H., Grimbaldeston M.A., Finlay-Jones J.J. Sunlight, immunosuppression and skin cancer: role of histamine and mast cells. Clin. Exp. Pharmacol. Physiol. 2001; 28(1-2): 1-8.
  34. Rothschild L.J. The influence of UV radiation on protistan evolution. J. Eukaryot. Microbiol. 1999; 46(5): 548-55.

Copyright (c) 2019 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies