Tumor stem cells: Melanoma


Cite item

Full Text

Abstract

The concept of tumor stem cells has been formulated about two decades ago, and their identification and functioning are now a priority in many studies, for example, of radio- and chemotherapy resistance and of tumor relapses. It is assumed that tumor stem cells, like normal stem cells, are capable of asymmetrical division, in addition, they can differentiate into other than tumor stem cells. Tumor stem cells are one of the factors responsible for tumor tissue heterogeneity. We analyze the biology of tumor stem cells in general and of melanoma in particular, their markers, methods for identification of these cells, and their significance for clinical oncology.

About the authors

Tatiana G. Ruksha

V.F. Voido-Yasenetsky Krasnoyarsk State Medical University

Email: tatyana_ruksha@mail.ru
MD, PhD, DSc 660022, Krasnoyarsk, Russia

M. B Aksenenko

V.F. Voido-Yasenetsky Krasnoyarsk State Medical University

Email: aksenenko_mariya@mail.ru
кандидат мед. наук 660022, Krasnoyarsk, Russia

Yu. A Fefelova

V.F. Voido-Yasenetsky Krasnoyarsk State Medical University

Email: fefelovaja@mail.ru
доктор биол. наук, доцент 660022, Krasnoyarsk, Russia

References

  1. Ramsden C.M., Powner M.B., Carr A.J.F., Smart M.J.K., Cruz L., Coffey P.J. Stem cells in retinal regeneration: past, present and future. Development. 2013; 140(12): 2576-85. doi: 10.1242/dev.092270.
  2. Friedmann-Morvinski D., Verma I.M. Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep. 2014; 15(3): 244-53. doi: 10.1002/embr.201338254
  3. Baccelli I., Trumpp A. The evolving concept of cancer and metastasis stem cells. J. Cell Biol. 2012; 198(3): 281-93. doi: 10.1083/jcb.201202014.
  4. Pierce G.B., Speers S. Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res. 1988; 48: 1996-2004.
  5. Bonnet D., Dick J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 1997; 3(7): 730-7.
  6. Kobayashi N.C., Noronha S.M. Cancer stem cells: a new approach to tumor development. Rev. Assoc. Med. Bras. 2015; 61(1): 86-93. doi: 10.1590/1806-9282.61.01.086.
  7. Mimeault M., Batra S.K. Molecular biomarkers of cancer stem/progenitor cells associated with progression, metastases, and treatment resistance of aggressive cancers. Cancer Epidemiol. Biomarkers Prev. 2014; 23(2): 234-54. doi: 10.1158/1055-9965.EPI-13-0785
  8. Shetzer Y., Solomon H., Koifman G., Molchadsky A., Horesh S., Rotter V. The paradigm of mutant p53-expressing cancer stem cells and drug resistance. Carcinogenesis. 2014; 35(6): 1196-208. doi: 10.1093/carcin/bgu073.
  9. Umezawa A., Gorham J.D. Dueling models in head and neck tumor formation. Lab. Invest. 2010; 90(11): 1546-8. doi: 10.1038/labinvest.2010.165.
  10. Mani S.A., Guo W., Liao M.J., Eaton E.N., Ayyanan A., Zhou A.Y., et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008; 133(4): 704-15. doi: 10.1016/j.cell.2008.03.027.
  11. Quintana E., Shackleton M., Foster H.R., Fullen D.R., Sabel M.S., Johnson T.M., et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell. 2010; 18(5): 510-23.
  12. Liu S., Cong Y., Wang D., Sun Y., Deng L., Liu Y., et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem. Cell Reports. 2013; 2(1):78-91. doi: 10.1016/j.stemcr.2013.11.009.
  13. Facchino S., Abdouh M., Bernier G. Brain cancer stem cells: current status on glioblastoma multiforme. Cancers (Basel). 2011; 3(2): 1777-97. doi: 10.3390/cancers3021777.
  14. Schlaak M., Schmidt P., Bangard C., Kurschat P., Mauch C., Abken H. Regression of metastatic melanoma in a patient by antibody targeting of cancer stem cells. Oncotarget. 2012; 3(1): 22-30.
  15. Fang D., Nguyen T.K., Leishear K., Finko R., Kulp A.N., Hotz S., et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 2005; 65(20): 9328-37.
  16. Scatena R., Mordente A., Giardina B., eds. Advances in cancer stem cell biology. Springer, 2012.
  17. Wu Y., Wu P.Y. CD133 as a marker for cancer stem cells: progresses and concerns. Stem. Cells Dev. 2009; 18(8): 1127-34. doi: 10.1089/scd.2008.0338.
  18. Lai C.Y., Schwartz B.E., Hsu M.Y. CD133+ melanoma subpopulations contribute to perivascular niche morphogenesis and tumorigenicity through vasculogenic mimicry. Cancer Res. 2012; 72(19): 5111-8.
  19. Skirecki T., Hoser G., Kawiak J., Dziedzic D., Domagała-Kulawik J. Flow cytometric analysis of CD133- and EpCAM-positive cells in the peripheral blood of patients with lung cancer. Arch. Immunol. Ther. Exp. (Warsz). 2014; 62(1): 67-75.
  20. Blancas-Mosqueda M., Zapata-Benavides P., Zamora-Ávila D., Saavedra-Alonso S., Manilla-Muñoz E, Franco-Molina M., et al. CD133 antisense suppresses cancer cell growth and increases sensitivity to cisplatin in vitro. Exp. Ther. Med. 2012; 4(5): 901-5.
  21. Lang D., Mascarenhas J.B., Shea C.R. Melanocytes, melanocyte stem cells, and melanoma stem cells. Clin. Dermatol. 2013; 31(2): 166-78. doi: 10.1016/j.clindermatol.2012.08.014.
  22. Wu C.P., Sim H.M., Huang Y.H., Liu Y.C., Hsiao S.H., Cheng H.W., et al. Overexpression of ATP-binding cassette transporter ABCG2 as a potential mechanism of acquired resistance to vemurafenib in BRAF(V600E) mutant cancer cells. Biochem. Pharmacol.2013; 85(3): 325-34.
  23. Civenni G., Walter A., Kobert N., Mihic-Probst D., Zipser M., Belloni B., et al. Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res. 2011; 71(8): 3098-109. doi: 10.1158/0008-5472.CAN-10-3997.
  24. Choi A.R., Park J.R., Kim R.J., Kim S.R., Cho S.D., Jung J.Y., et al. Inhibition of Wnt1 expression reduces the enrichment of cancer stem cells in a mouse model of breast cancer. Biochem. Biophys. Res. Commun. 2012; 425(2): 436-42. doi: 10.1016/j.bbrc.2012.07.120.
  25. Alipio Z., Liao W., Roemer E., Waner M., Fink L., Ward D., et al. Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc. Natl. Acad. Sci. USA. 2010; 107(30): 13426-31. doi: 10.1073/pnas.1007884107.
  26. Fridman R., Benton G., Aranoutova I., Kleinman H.K., Bonfil R.D. Increased initiation and growth of tumor cell lines, cancer stem cells and biopsy material in mice using basement membrane matrix protein (Cultrex or Matrigel) co-injection. Nat. Protoc. 2012; 7(6): 1138-44.
  27. Glover J.C., Boulland J.L., Halasi G, Kasumacic N. Chimeric animal models in human stem cell biology. ILAR J. 2009; 51(1): 62-73.
  28. Herlyn M., Fukunaga-Kalabis M. What is a good model of melanoma? J. Invest. Dermatol. 2010; 130(4): 911-2. doi: 10.1038/jid.2009.441.
  29. Beaumont K.A., Mohana-Kumaran N., Haass N.K. Modeling melanoma in vitro and in vivo. Healthcare. 2014; 2(1): 27-46.
  30. Liu J., Fukunaga-Kalabis M., Li L., Herlyn M. Developmental pathways activated in melanocytes and melanoma. Arch. Biochem. Biophys. 2014; 563: 13-21. doi: 10.1016/j.abb.2014.07.023.
  31. Hearing V.J. Determination of melanin synthetic pathway. J. Invest. Dermatol 2011; 131(E1): E8-11. doi: 10.1038/skinbio.2011.4.
  32. Ernfors P. Cellular origin and developmental mechanisms during the formation of skin melanocytes. Exp. Cell Res. 2010; 316(8): 1397-407. doi: 10.1016/j.yexcr.2010.02.042.
  33. Hoerter J.D., Bradley P., Casillas A., Chambers D., Weiswasser B., Clements L., et al. Does melanoma begin in a melanocyte stem cell? J. Skin Cancer. 2012; 2012: 571087. doi: 10.1155/2012/571087.
  34. Bell R.E., Levy C. The three M’s: melanoma, microphthalmia-associated transcription factor and microRNA. Pigment. Cell Melanoma Res. 2011; 24(6): 1088-106. doi: 10.1111/j.1755-148X.2011.00931.x.
  35. Li A. The biology of melanocyte and melanocyte stem cell. Acta Biochim. Biophys. Sin. (Shanghai). 2014; 46: 255-60. doi: 10.1093/abbs/gmt145
  36. Nishikawa-Torikai S., Nishikawa S. Stem cell niche: from concept to reality. Pigment Cell Melanoma Res. 2012; 25(2): 122-3. doi: 10.1111/j.1755-148X.2011.00967.
  37. Nishimura E.K. Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res. 2011; 24(3): 401-10. doi: 10.1111/j.1755-148X.2011.00855
  38. Ohta S., Imaizumi Y., Akamatsu W., Okano H., Kawakami Y. Generation of human melanocytes from induced pluripotent stem cells. Methods Mol. Biol. 2013; 989: 193-215. doi: 10.1007/978-1-62703-330-5_16.
  39. Frank N.Y., Margaryan A., Huang Y., Waaga-Gasser A.M., Gasser M., Sayegh M.H., et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res. 2005; 65(10): 4320-33.
  40. Boiko A.D., Razorenova O.V., Rijn M., Swetter S.M., Johnson D.L., Ly D.P., et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature. 2010; 466(7302):133-7.
  41. Boonyaratanakornkit J.B., Yue L., Strachan L.R., Scalapino K.J., Le Boit P.E., Lu Y., et al. Selection of tumorigenic melanoma cells using ALDH. J. Invest. Dermatol. 2010; 130(12): 2799-808. doi: 10.1038/jid.2010.237.
  42. Rajasekhar V.K., ed. Cancer stem cells. New Jersey: John Willey Sons; 2014.
  43. Tsao H., Chin L., Garraway L.A., Fisher D.E. Melanoma: from mutations to medicine. Genes Dev. 2012; 26(11): 1131-55. doi: 10.1101/gad.191999.112.
  44. Bello D.M., Ariyan C.E., Carvajal R.D. Melanoma mutagenesis and aberrant. Cell Signaling. 2013; 20(4): 261-81.
  45. Dumaz N. Mechanism of RAF isoform switching induced by oncogenic RAS in melanoma. Small GTPases. 2011; 2(5): 289-92.
  46. Turley R.S., Tokuhisa Y., Toshimitsu H., Lidsky M.E., Padussis J.C., Fontanella A., et al. Targeting N-cadherin increases vascular permeability and differentially activates AKT in melanoma. Ann. Surg. 2015; 261(2): 368-77. doi: 10.1097/SLA.0000000000000635.
  47. Lobos-González L., Aguilar L., Diaz J., Diaz N., Urra H., Torres V., et al. E-cadherin determines Caveolin-1 tumor suppresion or metastasis enhancing function in melanoma cells. Pigment Cell Melanoma Res. 2013; 26(4): 555-70. doi: 10.1111/pcmr.12085.
  48. Tabone-Eglinger S., Wehrle-Haller M., Aebischer N, Jacquier M.C., Wehrle-Haller B. Membrane-bound Kit ligand regulates melanocyte adhesion and survival, providing physical interaction with an intraepithelial niche. FASEB J. 2012; 26(9): 3738-53.
  49. Lennartsson J., Rönnstrand L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol. Rev. 2012; 92(4): 1619-49. doi: 10.1152/physrev.00046.2011.
  50. Mehnert J.M., Kluger H.M. Driver mutations in melanoma: lessons learned from bench-to-bedside studies. Curr. Oncol. Rep. 2012; 14(5): 449-57. doi: 10.1007/s11912-012-0249-5.
  51. Lu C., Lu Z.J.C., Zhang J., Nagahawatte P., Easton J., Lee S., et al. The genomic landscape of childhood and adolescent melanoma. J. Invest. Dermatol. 2015; 135 (3): 816-23. doi: 10.1038/jid.2014.425.
  52. Chen L., Faire M., Kissner M.D., Laird D.J. Primordial germ cells and gastrointestinal stromal tumors respond distinctly to a c-Kit overactivating allele. Hum. Mo.l Genet. 2013; 22(2): 313-27. doi: 10.1093/hmg/dds430.
  53. Lacy K.E., Karagiannis S.N., Nestle F.O. Advances in the treatment of melanoma. Clin. Med. 2012; 12(2): 168-71.
  54. Dahl C., Abildgaard C., Riber-Hansen R., Steiniche T., Lade-Keller J., Guldberg P., et al. KIT is a frequent target for epigenetic slencing in cutaneous melanoma. J. Invest. Dermatol. 2015; 135(2): 516-24. doi: 10.1038/jid.2014.372.

Copyright (c) 2015 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies