Фототерапия псориаза: основные механизмы действия


Цитировать

Полный текст

Аннотация

Представлен обзор данных литературы, посвященных изучению механизмов действия средневолновой ультрафиолетовой терапии и ПУВА-терапии псориаза. Согласно современным представлениям, лечебный эффект фототерапии опосредован сочетанием нескольких механизмов действия: нарушением репликации ДНК и клеточного цикла, генерацией активных форм кислорода, стимуляцией апоптоза Т-лимфоцитов, дендритных клеток и кератиноцитов, модуляцией синтеза цитокинов и их рецепторов в коже. Описанные эффекты обусловливают иммуносупрессивное, противовоспалительное и антипролиферативное действие фототерапии.

Об авторах

Марьяна Борисовна Жилова

ФГБУ Государственный научный центр дерматовенерологии и косметологии Минздрава России

Email: zhilova@cnikvi.ru
кандидат мед. наук 107076, Москва, Россия

Владимир Анатольевич Волнухин

ФГБУ Государственный научный центр дерматовенерологии и косметологии Минздрава России

Email: volnuhin@cnikvi.ru
доктор мед. наук, профессор 107076, Москва, Россия

Список литературы

  1. Parisi R., Symmons D.P., Griffiths C.E., Ashcroft D.M.; Identification and Management of Psoriasis and Associated ComorbidiTy (IMPACT) project team. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J. Invest. Dermatol. 2013; 133(2): 377-85.
  2. Кубанова А.А., Мелехина Л.Е., Кубанов А.А., Богданова Е.В. Ресурсы и деятельность медицинских организаций дермато-венерологического профиля в Российской Федерации в 2013 году. Вестник дерматологии и венерологии 2014; 3: 16-36.
  3. Вольф К., Голдсмит Л.А., Кац С.И., Джилкрест Б.А., Паллер Э.С., Леффель Д.Дж. Дерматология Фицпатрика в клинической практике. Пер. с англ. М.: Изд. Панфилова; БИНОМ; 2012. т. 1: 180-207.
  4. Moan J., Peak M.J. Effects of UV radiation of cells. J. Photochem. Photobiol. 1989; 4(1): 21-34.
  5. Ronai Z.A., Lambert M.E., Weinstein I.B. Inducible cellular responses to ultraviolet light irradiation and other mediators of DNA damage in mammalian cells. Cell Biol. Toxicol. 1992; 6(1): 105-26.
  6. Warmuth I., Harth Y., Matsui M.S. Wang N., DeLeo V.A. Ultraviolet radiation induces phosphorylation of the epidermal growth factor receptor. Cancer Res. 1994; 54(2): 374-6.
  7. Devary Y., Rosette C., Di Donato J.A., Karin N. NF-kappa B activation by ultraviolet light not dependent on a nuclear signal. Science. 1993; 261(5127): 1442-5.
  8. Gibbs N.K., Tye J., Norval M. Recent advances in urocanic acid photochemistry, photobiology and photoimmunology. Photochem. Photobiol. Sci. 2008; 7(6): 655-67.
  9. Ullrich S.E., Byrne S.N. The immunologic revolution: photoimmunology. J. Invest. Dermatol. 2012; 132(3, Pt 2): 896905.
  10. Skov L., Hansen H., Allen M., Villadsen L., Norval M., Barker J.N. Contrasting effects of ultraviolet A1 and ultraviolet B exposure on the induction of tumour necrosis factor-alpha in human skin. Br. J. Dermatol. 1998; 138(2): 216-20.
  11. McLoone P., Simics E., Barton A., Norval M., Gibbs N.K. An action spectrum for the production of cis-urocanic acid in human skin in vivo. J. Invest. Dermatol. 2005; 124(5): 1071-4.
  12. Norval M., McLoone P., Lesiak A., Narbutt J. The effect of chronic ultraviolet radiation on the human immune system. Photochem. Photobiol. 2008; 84(1): 19-28.
  13. Damian D.L., Matthews Y.J., Phan T.A., Halliday G.M. An action spectrum for ultraviolet radiation-induced immunosuppression in humans. Br. J. Dermatol. 2011; 164(3): 657-9.
  14. Schwarz A., Schwarz T. Molecular determinants of UV-induced immunosuppression. Exp. Dermatol. 2002; 11(1): 9-12.
  15. Godar D.E. Preprogrammed and programmed cell death mechanisms of apoptosis: UV-induced immediate and delayed apoptosis. Photochem. Photobiol. 1996; 63(6): 825-30.
  16. Ozawa M., Ferenczi K., Kikuchi T., Cardinale I., Austin L.M., Coven T.R. 312-nanometer ultraviolet B light (narrow band UVB) induces apoptosis of T cells within psoriatic lesions. J. Exp. Med. 1999; 189(4): 711-8.
  17. Олисова О.Ю., Богадельникова А.Г., Микрюков А.В., Верхотурова Е.Г. УФБ-излучение узкого спектра 311 нм в лечении кожных заболеваний (обзор). Российский журнал кожных и венерических болезней. 2007; 4: 38-42.
  18. Aragane Y., Kulms D., Metze D., Wilkes G., Poppelmann B., Luger T.A., Schwarz T. Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J. Cell. Biol. 1998; 140(1): 171-82.
  19. Kulms D., Poppelmann B., Yarosh D., Luger T.A., Krutmann J., Schwarz T. Nuclear and cell membrane effects contribute independently to the induction of apoptosis in human cells exposed to UvB radiation. Proc. Natl. Acad. Sci. USA. 1999; 96(14): 7974-9.
  20. Kolgen W., Both H., van Weelden H., Guikers K.L., Bruijnzeel- Koomen C.A., Knol E.F. Epidermal langerhans cell depletion after artificial ultraviolet B irradiation of human skin in vivo: apoptosis versus migration. J. Invest. Dermatol. 2002; 118(5): 812-7.
  21. Seite S., Zucchi H., Moyal D., Tison S., Compan D., Christiaens F. Alterations in human epidermal Langerhans cells by ultraviolet radiation: quantitative and morphological study. Br. J. Dermatol. 2003; 148(2): 291-9.
  22. DeSilva B., McKenzie R.C., Hunter J.A., Norval M. Local effects of TL01 phototherapy in psoriasis. Photodermatol. Photoimmunol. Photomed. 2008; 24(5): 268-9.
  23. Weichenthal M., Schwarz T. Phototherapy: how does UV work? Photodermatol. Photoimmunol. Photomed. 2005; 21(5): 260-6.
  24. Nickoloff B.J., Qin J.Z., Nestle F.O. Immunopathogenesis of psoriasis. Clin. Rev. Allergy Immunol. 2007; 33(1-2): 45-56.
  25. Johnson-Huang L.M., Suarez-Farinas M., Sullivan-Whalen M., Gilleaudeau P., Krueger J.G., Lowes M.A. Effective narrowband ultraviolet B radiation therapy suppresses the IL-23/IL-17 axis in normalized psoriasis plaques. J. Invest. Dermatol. 2010; 130(11): 2654-63.
  26. Piskin G., Tursen U., Sylva-Steenland R.M., Bos J.D., Teunissen M.B. Clinical improvement in chronic plaque-type psoriasis lesions after narrow-band UVB therapy is accompanied by a decrease in the expression of IFN-gamma inducers - IL-12, IL-18, and IL-23. Exp. Dermatol. 2004; 13(12): 764-72.
  27. Grewe M., Gyufko K., Krutmann J. Interleukin-10 production by cultured human keratinocytes: regulation by ultraviolet B and ultraviolet A1 radiation. J. Invest. Dermatol. 1995; 104(1): 3-6.
  28. Asadullah K., Sterry W., Stephanek K., Jasulaitis D., Leupold M., Audring H. IL-10 is a key cytokine in psoriasis. Proof of principle by IL-10 therapy: a new therapeutic approach. J. Clin. Invest. 1998; 101(4): 783-94.
  29. Nickoloff B.J. Cracking the cytokine code in psoriasis. Nat. Med. 2007; 13(3): 242-4.
  30. Norris D.A., Lyons M.B., Middleton M.H., Yohn J.Y., Kashihara- Sawami M. Ultraviolet radiation can either suppress or induce expression of intercellular adhesion molecule-1 (ICAM-1) on the surface of cultured human keratinocytes. J. Invest. Dermatol. 1990; 95(2): 132-8.
  31. Krutmann J., Grewe M. Involvement of cytokines, DNA damage, and reactive oxygen intermediates in ultraviolet radiation-induced modulation of intercellular adhesion molecule-1 expression. J. Invest. Dermatol. 1995; 105(1, Suppl): S67-70.
  32. Krueger J.G., Wolfe J.T., Nabeya R.T., Vallat V.P., Gilleaudeau P., Heftler N.S. Successful ultraviolet B treatment of psoriasis is accompanied by a reversal of keratinocyte pathology and by selective depletion of intraepidermal T cells. J. Exp. Med. 1995; 182(6): 2057-68.
  33. Weatherhead S.C., Farr P.M., Jamieson D., Hallinan J.S., Lloyd J.J., Wipat A., Reynolds N.J. Keratinocyte apoptosis in epidermal remodeling and clearance of psoriasis induced by UV radiation. J. Invest. Dermatol. 2011; 131(9): 1916-26. doi: 10.1038/jid.2011.134.
  34. Pathak M.A., Joshi P.C. The nature and molecular basis of cutaneous photosensitivity to psoralens and coal tar. J. Invest. Dermatol. 1983; 80 (1, Suppl): S66-74. doi: 10.1038/jid.1983.18.
  35. Zarebska Z., Waszkowska E., Caffieri S., Dall’Acqua F. PUVA (psoralen + UVA) photochemotherapy: processes triggered in the cells. Farmaco. 2000; 55(8): 515-20.
  36. Nagy E.M., Dalla Via L., Ronconi L., Fregona D. Recent advances in PUVA photochemotherapy and PDT for the treatment of cancer. Curr. Pharm. Des. 2010; 16(16): 1863-76.
  37. Danno K., Horio T. In vitro PUVA radiation abolishes fluorescent staining with epidermal cell and basement membrane zone markers. Br. J. Dermatol. 1985; 113(4): 391-6.
  38. Averbeck D. Recent advances in psoralen phototoxicity mechanism. Photochem. Photobiol. 1989; 50(6): 859-82.
  39. Punnonen K., Jansen C.T., Puntala A., Ahotupa M. Effects of in vitro UVA irradiation and PUVA treatment on membrane fatty acids and activities of antioxidant enzymes in human keratinocytes. J. Invest. Dermatol. 1991; 96(2): 255-9.
  40. Johnson R., Staiano-Coico L., Austin L., Cardinale I., Nabeya-Tsukifuji R., Krueger J.G. PUVA treatment selectively induces a cell cycle block and subsequent apoptosis in human T-lymphocytes. Photochem. Photobiol. 1996; 63(5): 566-71.
  41. Coven T.R., Walters I.B., Cardinale I., Krueger J.G. PUVA-induced lymphocyte apoptosis: mechanism of action in psoriasis. Photodermatol. Photoimmunol. Photomed. 1999; 15(1): 22-7.
  42. Ceovic R., Pasic A., Lipozencic J., Jakic-Razumovic J., Szirovicza L., Kostovic K. Antiproliferative, antiangiogenic and apoptotic effect of photochemotherapy (PUVA) in psoriasis patients. Coll. Antropol. 2007; 31(2): 551-6.
  43. Furuhashi T., Saito C., Torii K., Nishida E., Yamazaki S., Morita A. Photo(chemo)therapy reduces circulating Th17 cells and restores circulating regulatory T cells in psoriasis. PLoS One. 2013; 8(1): e54895. doi: 10.1371/journal.pone.0054895.
  44. Singh T.P., Schon M.P., Wallbrecht K., Wolf P. 8-Methoxypsoralen plus UVA treatment increases the proportion of CLA+CD25+CD4+ T cells in lymph nodes of K5.hTGFp1 transgenic mice. Exp. Dermatol. 2012; 21(3): 228-30. doi: 10.1111/j.1600- 0625.2011.01437.x.
  45. Baker B.S., Swain A.F., Griffiths C.E., Leonard J.N., Fry L., Valdimarsson H. Epidermal T lymphocytes and dendritic cells in chronic plaque psoriasis: the effects of PUVA treatment. Clin. Exp. Immunol. 1985; 61(3): 526-34.
  46. Okamoto H., Horio T. The effect of 8-methoxypsoralen and longwave ultraviolet light on Langerhans cell. J. Invest. Dermatol. 1981; 77(4): 345-6.
  47. Erkin G., Ugur Y., Gurer C.K., A§an E., Korkusuz P., Sahin S. Effect of PUVA, narrow-band UVB and yclosporine on inflammatory cells of the psoriatic plaque. J. Cutan. Pathol. 2007; 34(3): 213-9.
  48. Mermelstein F.H., Abidi T.F., Laskin J.D. Inhibition of epidermal growth factor receptor tyrosine kinase activity in A431 human epidermoid cells following psoralen/ultraviolet light treatment. Mol. Pharmacol. 1989; 36(6): 848-55.
  49. Esaki K., Mizuno N. Effect of psoralen + ultraviolet-A on the chemotactic activity of polymorphonuclear neutrophils towards anaphylatoxin C5a des Arg. Photochem. Photobiol. 1992; 55(5): 783-88.
  50. Ravic-Nikolic A., Radosavljevic G., Jovanovic I., Mitrovic S., Pavlovic S. Systemic photochemotherapy decreases the expression of IFN-y, IL-12p40 and IL-23p19 in psoriatic plaques. Eur. J. Dermatol. 2011; 21(1): 53-7.
  51. Singh T.P., Schon M.P., Wallbrecht K., Michaelis K., Rinner B. , Mayer G. 8-methoxypsoralen plus ultraviolet A therapy acts via inhibition of the IL-23/Th17 axis and induction of Foxp3+ regulatory T cells involving CTLA4 signaling in a psoriasis-like skin disorder. J. Immunol. 2010; 184(12): 7257-67.
  52. Coimbra S., Oliveira H., Reis F., Belo L., Rocha S., Quintanilha A. Interleukin (IL)-22, IL-17, IL-23, IL-8, vascular endothelial growth factor and tumour necrosis factor-a levels in patients with psoriasis before, during and after psoralen-ultraviolet A and narrowband ultraviolet B therapy. Br. J. Dermatol. 2010; 163(6): 1282-90.
  53. Vallat V.P., Gilleaudeau P., Battat L., Wolfe J., Nabeya R., Heftler N. PUVA bath therapy strongly suppresses immunological and epidermal activation in psoriasis: a possible cellular basis for remittive therapy. J. Exp. Med. 1994; 180(1): 283-96.
  54. El-Domyati M., Moftah N.H., Nasif G.A., Abdel-Wahab H. M., Barakat M.T., Abdel-Aziz R.T. Evaluation of apoptosis regulatory proteins in response to PUVA therapy for psoriasis. Photodermatol. Photoimmunol. Photomed. 2013; 29(1): 18-26.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Эко-Вектор", 2014


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».