THE ROLE OF NONINVASIVE METHODS IN STUDIES OF THE STRUCTURE AND FUNCTIONS OF NEWBORN SKIN


Cite item

Full Text

Abstract

The structure and functions of the skin were studied in the newborns by noninvasive methods. A comprehensive morphofunctional study was carried out in 10 newborns aged 1—28 days by optical coherent tomography using an optical coherent tomograph fitted with a flexible probe with a microscanner (wavelength 920 nm, longitudinal resolution 20 μ, transverse resolution 25 μ) and a multifunctional unit. The findings indicated that the skin of newborns differed by structure and functions from adolescent skin. The specific features of the newborn skin function were explained by its microstructure. The key differences in the structure, detected in the thick skin, demonstrated an incomplete process of skin structures formation by birth.

About the authors

I. L Shlivko

Nizhny Novgorod State Medical Academy

Email: irshlivko@gmail.com
кандидат мед. наук, доцент Кафедра кожных и венерических болезней

V. A Kamensky

Institute of Applied Physics

доктор физ. наук, старший научный сотрудник, заведующий лабораторией № 343

E. V Donchenko

Nizhny Novgorod Institute of Traumatology and Orthopadics

руководитель отдела

References

  1. Nikolovski J., Stamatas G. N., Kollias N., Wiegand B.C. Banier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. J. Invest. Dermatol. 2008; 128(2): 1728—36.
  2. Saidi I.S., Jacques S.L., Tittel F.K. Mie and Rayleigh modeling of visible-light scattering in neonatal skin. Appl. Opt. 1995; 34(31): 7410—8. doi: 10.1364/A0.34.007410.
  3. Bosschaart N., Mentink R., Kok J.H., van Leeuwen T.G., Aalders M.C. Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation. J. Biomed. Opt. 2011; 16(9): 097003. doi: 10.1117/1.3622629.
  4. Stamatas G.N, Nikolovski J., Luedtke M.A., Kollias N., Wiegand B.C. Infant skin microstructure assessed in vivo differs from adult skin in organization and at the cellular level. Pediatr. Dermatol. 2010; 27(2): 125—31. doi: 10.1111/j.1525-1470.2009.00973.x.
  5. Shlivko I.L., Petrova G.A., Zor’kina M.V., Tchekalkina O.E., Firsova M.S., Ellinsky D.O., et al. Complex assessment of age-specific morphofunctional features of skin of different anatomic localizations. Skin Res. Technol. 2013; 19(1): 85—92. doi: 10.1111/j.1600-0846.2012.00613.x.
  6. Kirillin M.Y., Agrba P.D., Kamensky V.A. In vivo study of the effect of mechanical compression on formation of OCT images of human skin. J Biophotonics. 2010; 3(12): 752—8. doi: 10.1002/ jbio.201000063.
  7. Evans N.J., Rutter N. Development of the epidermis in the newborn. Biol. Neonate. 1986; 49(2): 74—80.
  8. Visscher M.O., Chatterjee R., Ebel J.P., LaRuffa A.A., Hoath S.B. Biomedical assessment and instrumental evaluation of healthy infant skin. Pediatr Dermatol. 2002; 19(6): 473—81.
  9. Kashibuchi N., Hirai Y., O’Goshi K., Tagami H. Three-dimensional analyses of individual corneocytes with atomic force microscope:morphological changes related to age, location and to the pathologic skin conditions. Skin Res. Technol. 2002; 8(4): 203—11.
  10. Vitellaro-Zuccarello L., Cappelletti S., Dal Pozzo Rossi V., Sari-Gorla M. Stereological analysis of collagen and elastic fibers in the normal human dermis: variability with age, sex, and body region. Anat. Rec. 1994; 238(2): 153—62.

Copyright (c) 2013 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies