Innovative regenerative treatment strategies for androgenetic alopecia: a review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Androgenetic alopecia is the most common cause of hair loss in both men and women. Androgenetic alopecia is characterized by increased sensitivity of hair, predominantly in the frontoparietal areas, to dihydrotestosterone, leading to hair loss and miniaturization. The hair growth cycle can be affected by various negative factors that reduce stem cell activity and the ability of hair follicles to regenerate.

It is a pressing issue to develop new treatment options that can stop the progression of the changes in hair follicles, and promote their regression. Cell therapy is a promising regenerative medicine technology that uses stem cells or their derivatives to promote the restoration of damaged tissues. A special research focus is on the use of mesenchymal stem cells and their extracellular vesicles to optimize hair follicle regeneration in androgenetic alopecia.

Our work used published data to demonstrate the effectiveness of mesenchymal stem cells and exosomes (Exos) in the treatment of androgenetic alopecia. The review was prepared using the PubMed, Google Scholar, and Cochrane Library databases. The following keywords were used to search the data sources: регенеративная медицина / regenerative medicine, андрогенная алопеция / androgenetic alopecia, экзосомы / exosomes, and мезенхимальные стволовые клетки / mesenchymal stem cells. The article presents the latest evidence on the effects of mesenchymal stem cells, their microenvironment and exosomes on the restoration process of weakened hair follicles. The demand for effective regenerative therapy remains high. Mesenchymal stem cell-based and cell-free regenerative strategies have shown promise in restoring hair follicles, making them a valuable area for future research.

Further investigation of the mechanism of human follicle regeneration is needed. A variety of epidermal/dermal components and regeneration techniques ensure flexibility in future clinical treatment approaches. Mesenchymal stem cell-based and cell-free regenerative strategies and tissue engineering techniques have shown promise in restoring hair follicles, making them a valuable area for future research. Using new regenerative techniques to treat androgenetic alopecia requires an in-depth understanding of the mechanisms of action of cellular products and evaluation of the efficacy and safety of these techniques in preclinical and clinical settings.

About the authors

Konstantin M. Lomonosov

The First Sechenov Moscow State Medical University

Email: lamclinic@yandex.ru
ORCID iD: 0000-0002-4580-6193
SPIN-code: 4784-9730

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Vladimir B. Pinegin

The First Sechenov Moscow State Medical University

Email: vbpinegin@gmail.com
ORCID iD: 0000-0002-5159-1440
SPIN-code: 8699-4206

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Lyailya N. Kayumova

The First Sechenov Moscow State Medical University

Email: avestohka2005@inbox.ru
ORCID iD: 0000-0003-0301-737X
SPIN-code: 4391-9553

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Viktoriia M. Poglazova

The First Sechenov Moscow State Medical University

Author for correspondence.
Email: vvvpoglazova@gmail.com
ORCID iD: 0009-0006-8049-040X
Russian Federation, Moscow

References

  1. Karasev EA, Lunkova AS. New in topical therapy of androgenetic alopecia. Problemy nauki. 2019;(11):98–104. doi: 10.24411/2413-2101-2019-11103 EDN: LDCJGU
  2. Galván SV, Piraccini BM, Reygagne P, et al. A description of alopecia areata in European patients based on real-world survey data: physician-reported characterization of severity and associated treatment utilization. Eur J Dermatol. 2023;33(6):648–656. doi: 10.1684/ejd.2023.4578 EDN: QIPOTG
  3. Bejaoui M, Villareal MO, Isoda H. β-Catenin-mediated hair growth induction effect of 3,4,5-tri-o-caffeoylquinic acid. Aging (Albany NY). 2019;11(12):4216–4237. doi: 10.18632/aging.102048
  4. Bienenfeld A, Azarchi S, Lo Sicco K, et al. Androgens in women: androgen-mediated skin disease and patient evaluation. J Am Acad Dermatol. 2019;80(6):1497–1506. doi: 10.1016/j.jaad.2018.08.062 EDN: VQSYEU
  5. Harshuk-Shabso S, Dressler H, Niehrs C, et al. Fgf and Wnt signaling interaction in the mesenchymal niche regulates the murine hair cycle clock. Nat Commun. 2020;11(1):5114. doi: 10.1038/s41467-020-18643-x EDN: TDKXQC
  6. Suchonwanit P, Thammarucha S, Leerunyakul K. Minoxidil and its use in hair disorders: a review. Drug Des Devel Ther. 2019;13:2777–2786. doi: 10.2147/DDDT.S214907 EDN: IHHBSE
  7. Ho CH, Sood T, Zito PM. Androgenetic alopecia. [2024 Jan 7]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  8. Binjadeed H, Almudimeegh AM, Alomran SA, Alshathry AH. A case of contact allergic dermatitis to topical minoxidil. Cureus. 2021;13(1):e12510. doi: 10.7759/cureus.12510 EDN: HQMBTF
  9. Zito PM, Bistas KG, Patel P, Syed K. Finasteride. [2024 Feb 28]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025.
  10. Andy G, John M, Mirna S, et al. Controversies in the treatment of androgenetic alopecia: the history of finasteride. Dermatol Ther. 2019;32(2):e12647. doi: 10.1111/dth.12647
  11. Ji S, Zhu Z, Sun X, Fu X. Functional hair follicle regeneration: an updated review. Signal Transduct Target Ther. 2021;6(1):66. doi: 10.1038/s41392-020-00441-y EDN: OOXXFD
  12. Gajjar P, Mehta H, Barvaliya M, Sonagra B. Comparative study between mesotherapy and topical 5% minoxidil by dermoscopic evaluation for androgenic alopecia in male: a randomized controlled trial. Int J Trichol. 2019;11(2):58–67. doi: 10.4103/ijt.ijt_89_18
  13. Faghihi G, Nabavinejad S, Mokhtari F, et al. Microneedling in androgenetic alopecia; comparing two different depths of microneedles. J Cosmetic Dermatol. 2021;20(4):1241–1247. doi: 10.1111/jocd.13714 EDN: ECLTUH
  14. Bao L, Gong L, Guo M, et al. Randomized trial of electrodynamic microneedle combined with 5% minoxidil topical solution for the treatment of Chinese male androgenetic alopecia. J Cosmetic Laser Ther. 2020;22(1):1–7. doi: 10.1080/14764172.2017.1376094 EDN: JLZRIC
  15. Alves R, Grimalt R. Platelet-rich plasma and its use for cicatricial and non-cicatricial alopecias: a narrative review. Dermatol Ther (Heidelb). 2020;10(4):623–633. doi: 10.1007/s13555-020-00408-5 EDN: TQXSVM
  16. Li Y, Long J, Zhang Z, Yin W. Insights into the unique roles of dermal white adipose tissue (dWAT) in wound healing. Front Physiol. 2024;15:1346612. doi: 10.3389/fphys.2024.1346612 EDN: YXSXBQ
  17. Chen CL, Huang WY, Wang EH, et al. Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration. J Biomed Sci. 2020;27(1):43. doi: 10.1186/s12929-020-0624-8 EDN: YOWQXK
  18. Nanmo A, Yan L, Asaba T, et al. Bioprinting of hair follicle germs for hair regenerative medicine. Acta Biomater. 2023;165:50–59. doi: 10.1016/j.actbio.2022.06.021 EDN: ETEUGB
  19. Kim SJ, Kim MJ, Lee YJ, et al. Innovative method of alopecia treatment by autologous adipose-derived SVF. Stem Cell Res Ther. 2021;12(1):486. doi: 10.1186/s13287-021-02557-6 EDN: VXREZS
  20. Cardoso CO, Tolentino S, Gratieri T, et al. Topical treatment for scarring and non-scarring alopecia: an overview of the current evidence. Clin Cosmet Invest Dermatol. 2021;14:485–499. doi: 10.2147/CCID.S284435 EDN: RWPIHD
  21. Krefft-Trzciniecka K, Piętowska Z, Nowicka D, Szepietowski JC. Human stem cell use in androgenetic alopecia: a systematic review. Cells. 2023;12(6):951. doi: 10.3390/cells12060951 EDN: KQXPCK
  22. Zhang M, Ye Y, Zhao P, et al. Preliminary studies of hair follicle regeneration by injections of epidermal stem cells and dermal papilla cells into nude mice. Cell Tissue Bank. 2020;21(2):321–327. doi: 10.1007/s10561-020-09825-4 EDN: DQZKSV
  23. Tan CT, Lim CY, Lay K. Modelling human hair follicles-lessons from animal models and beyond. Biology (Basel). 2024;13(5):312. doi: 10.3390/biology13050312 EDN: ZGLOEN
  24. Yuan AR, Bian Q, Gao JQ. Current advances in stem cell-based therapies for hair regeneration. Eur J Pharmacol. 2020;881:173197. doi: 10.1016/j.ejphar.2020.173197 EDN: ITCBQH
  25. Mathen C, Dsouza W. In vitro and clinical evaluation of umbilical cord-derived mesenchymal stromal cell-conditioned media for hair regeneration. J Cosmetic Dermatol. 2022;21(2):740–749. doi: 10.1111/jocd.14114 EDN: DPUCLS
  26. Shimizu Y, Ntege EH, Sunami H, Inoue Y. Regenerative medicine strategies for hair growth and regeneration: a narrative review of literature. Regen Ther. 2022;21:527–539. doi: 10.1016/j.reth.2022.10.005 EDN: GVDCHD
  27. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–650. doi: 10.1002/jor.1100090504
  28. Cheung TS, Bertolino GM, Giacomini C, et al. Mesenchymal stromal cells for graft versus host disease: mechanism-based biomarkers. Front Immunol. 2020;11:1338. doi: 10.3389/fimmu.2020.01338 EDN: GPHPYU
  29. Al Sogair SS. Stem cell therapy and hair loss: present evidence and future perspectives. J Dermatology Dermatologic Surg. 2019;23(2):61. doi: 10.4103/jdds.jdds_10_19
  30. Miceli V, Zito G, Bulati M, et al. Different priming strategies improve distinct therapeutic capabilities of mesenchymal stromal/stem cells: potential implications for their clinical use. World J Stem Cells. 2023;15:400–420. doi: 10.4252/wjsc.v15.i5.400 EDN: VBKRMP
  31. Miceli V, Bulati M, Iannolo G, et al. Therapeutic properties of mesenchymal stromal/stem cells: the need of cell priming for cell-free therapies in regenerative medicine. Int J Mol Sci. 2021;22(2):763. doi: 10.3390/ijms22020763 EDN: LZLAHZ
  32. Noronha NC, Mizukami A, Caliári-Oliveira C, et al. Correction to: priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther. 2019;10:132. doi: 10.1186/s13287-019-1259-0 EDN: CVUVYX
  33. Česnik AB, Švajger U. The issue of heterogeneity of MSC-based advanced therapy medicinal products: a review. Front Cell Dev Biol. 2024;12:1400347. doi: 10.3389/fcell.2024.1400347 EDN: HYLOCK
  34. Viswanathan S, Shi Y, Galipeau J, et al. Mesenchymal stem versus stromal cells: international society for cell and gene therapy (ISCT®) mesenchymal stromal cell committee position statement on nomenclature. Cytotherapy. 2019;21(10):1019–1024. doi: 10.1016/j.jcyt.2019.08.002
  35. Rennerfeldt DA, Raminhos JS, Leff SM, et al. Emergent heterogeneity in putative mesenchymal stem cell colonies: single-cell time lapsed analysis. PLoS One. 2019;14(4):e0213452. doi: 10.1371/journal.pone.0213452
  36. Žnidarič M, Žurga ŽM, Maver U. Design of in vitro hair follicles for different applications in the treatment of alopecia: a review. Biomedicines. 2021;9(4):435. doi: 10.3390/biomedicines9040435 EDN: HJJQCE
  37. Ji C, Ma J, Feng C, et al. Promotion of hair regrowth in androgenetic alopecia with supplemented erzhi wan: exploring its mechanism using network pharmacology and molecular docking. Clin Cosmet Investig Dermatol. 2023;16:2995–3022. doi: 10.2147/CCID.S425295 EDN: YHBWRE
  38. Tsuboi R, Niiyama S, Irisawa R, et al. Autologous cell-based therapy for male and female pattern hair loss using dermal sheath cup cells: a randomized placebo-controlled double-blinded dose-finding clinical study. J Am Acad Dermatol. 2020;83(1):109–116. doi: 10.1016/j.jaad.2020.02.033 EDN: JTFLDZ
  39. Dykstra JA, Facile T, Patrick RJ, et al. Concise review: fat and furious: harnessing the full potential of adipose-derived stromal vascular fraction. Stem Cells Transl Med. 2017;6(4):1096–1108. doi: 10.1002/sctm.16-0337 EDN: YYJPJD
  40. Uchasova EG, Dyleva YuA, Belik EV, Gruzdeva OV. Adipose tissue: derived mesenchymal stem: a role in the pathogenesis of obesity and type 2 diabetes mellitus. Obesity and metabolism. 2023;20(3):245–250. doi: 10.14341/omet12985 EDN: JYLYMD
  41. Zhang HL, Qiu XX, Liao XH. Dermal papilla cells: from basic research to translational applications. Biology (Basel). 2024;13(10):842. doi: 10.3390/biology13100842 EDN: DXCYOC
  42. Solovyova VV, Tazetdinova LG, Rizvanov AA. Isolation, cultivation and biochemical analysis of primary human cells: a textbook. Kazan: Publishing House of Kazan University; 2018. 114 p. (In Russ.)
  43. Anderi R, Makdissy N, Azar A, et al. Cellular therapy with human autologous adipose-derived adult cells of stromal vascular fraction for alopecia areata. Stem Cell Res Ther. 2018;9(1):141. doi: 10.1186/s13287-018-0889-y EDN: FLBOEW
  44. Stevens HP, Donners S, de Bruijn J. Introducing platelet-rich stroma: platelet-rich plasma (PRP) and stromal vascular fraction (SVF) combined for the treatment of androgenetic alopecia. Aesthet Surg J. 2018;38(8):811–822. doi: 10.1093/asj/sjy029
  45. Nilforoushzadeh MA, Lotfi E, Heidari-Kharaji M, et al. Autologous whole fat injection stimulates hair growth in resistant androgenetic alopecia: report of nine cases. J Cosmet Dermatol. 2021;20(8):2480–2485. doi: 10.1111/jocd.13907 EDN: DOSZVA
  46. Kuka G, Epstein J, Aronowitz J, et al. Cell enriched autologous fat grafts to follicular niche improves hair regrowth in early androgenetic alopecia. Aesthet Surg J. 2020;40(6):NP328–NP339. doi: 10.1093/asj/sjaa037 EDN: TPWNYR
  47. Butt G, Hussain I, Ahmad FJ, Choudhery MS. Stromal vascular fraction-enriched platelet-rich plasma therapy reverses the effects of androgenetic alopecia. J Cosmet Dermatol. 2020;19(5):1078–1085. doi: 10.1111/jocd.13149
  48. Kim Y, Kim SB, Lee H, et al. AIMP1-derived peptide secreted from hair follicle stem cells promotes hair growth by activating dermal papilla cells. Int J Biol Sci. 2024;20(14):5764–5778. doi: 10.7150/ijbs.101127 EDN: RRQJNU
  49. Elmaadawi IH, Mohamed BM, Ibrahim ZA, et al. Stem cell therapy as a novel therapeutic intervention for resistant cases of alopecia areata and androgenetic alopecia. J Dermatol Treat. 2018;29(5):431–440. doi: 10.1080/09546634.2016.1227419
  50. Gan Y, Du L, Wang H, et al. A clinical trial of treating androgenic alopecia with mesenchymal stem cell suspension derived from autologous hair follicle. Plast Reconstr Surg. 2024;154(3):444e–450e. doi: 10.1097/PRS.0000000000010841 EDN: HBUPLL
  51. Wang YG, Yuan VL, Liao XH. Genetic lineage tracing in skin reveals predominant expression of HEY2 in dermal papilla during telogen and that HEY2(+) cells contribute to the regeneration of dermal cells during wound healing. Exp Dermatol. 2023;32(12):2176–2179. doi: 10.1111/exd.14917 EDN: GQXSST
  52. Gao L, Chen EQ, Zhong H, et al. Large-scale isolation of functional dermal papilla cells using novel surface marker LEPTIN receptor. Cytometry A. 2022;101(8):675–681. doi: 10.1002/cyto.a.24569 EDN: QWTHTT
  53. Hu S, Li Z, Lutz H, et al. Dermal exosomes containing miR-218-5p promote hair regeneration by regulating beta-catenin signaling. Sci Adv. 2020;6(30):eaba1685. doi: 10.1126/sciadv.aba1685 EDN: EOHWDC
  54. Hwang J, Zheng M, Le TN, et al. Hair growth promoting effects of human dermal papilla cells in pig. Exp Dermatol. 2023;32(7):1156–1158. doi: 10.1111/exd.14795 EDN: OPZZTJ
  55. Shen Z, Sun L, Liu Z, et al. Rete ridges: morphogenesis, function, regulation, and reconstruction. Acta Biomater. 2023;155:19–34. doi: 10.1016/j.actbio.2022.11.031 EDN: AJLERP
  56. Razeghian E, Margiana R, Chupradit S, et al. Mesenchymal stem/stromal cells as a vehicle for cytokine delivery: an emerging approach for tumor immunotherapy. Front Med (Lausanne). 2021;8:721174. doi: 10.3389/fmed.2021.721174 EDN: MRJZNR
  57. Woith E, Fuhrmann G, Melzig MF. Extracellular vesicles-connecting kingdoms. Int J Mol Sci. 2019;20(22):5695. doi: 10.3390/ijms20225695 EDN: WANJQT
  58. Nuutila K. Hair follicle transplantation for wound repair. Adv Wound Care (New Rochelle). 2021;10(3):153–163. doi: 10.1089/wound.2019.1139 EDN: EIAAWN
  59. Norooznezhad AH, Yarani R, Payandeh M, et al. Treatment of persistent chemotherapy-induced hair loss (Alopecia) with human mesenchymal stromal cells exosome enriched extracellular vesicles: a case report. Heliyon. 2023;9(4):e15165. doi: 10.1016/j.heliyon.2023.e15165 EDN: FNMSHI
  60. Tian W, Liu S, Li B. Potential role of exosomes in cancer metastasis. Biomed Res Int. 2019;2019:4649705. doi: 10.1155/2019/4649705 EDN: IGXTOW
  61. Osaki M, Okada F. Exosomes and their role in cancer progression. Yonago Acta Med. 2019;62(2):182–190. doi: 10.33160/yam.2019.06.002
  62. Gareev IF, Beylerli OA, Zhao Sh, et al. Extraction of exosomes from glioblastoma multiforme patients’ blood plasma. Creative surgery and oncology. 2019;9(3):234–238. doi: 10.24060/2076-3093-2019-9-3-234-238 EDN: QQKSBR
  63. Lema DA, Burlingham WJ. Role of exosomes in tumour and transplant immune regulation. Scand J Immunol. 2019;90(5):e12807. doi: 10.1111/sji.12807
  64. Kelemen E, Danis J, Göblös A, et al. Exosomal long non-coding RNAs as biomarkers in human diseases. EJIFCC. 2019;30(2):224–236. EDN: LIWTJF
  65. Ter-Ovanesyan D, Norman M, Lazarovits R, et al. Framework for rapid comparison of extracellular vesicle isolation methods. eLife. 2021;10:e70725. doi: 10.7554/eLife.70725 EDN: UUXFHC
  66. Mansoor H, Ong H, Riau A, et al. Current trends and future perspective of mesenchymal stem cells and exosomes in corneal diseases. Int J Mol Sci. 2019;20:2853. doi: 10.3390/ijms20122853
  67. Shah M, Dukharan V, Broughton L, et al. Exosomes for aesthetic dermatology: a comprehensive literature review and update. J Cosmet Dermatol. 2025;24(1):e16766. doi: 10.1111/jocd.16766 EDN: PKNNQK
  68. Nilforoushzadeh M, Aghdami N, Taghiabadi E. Effects of adipose-derived stem cells and platelet-rich plasma exosomes on the inductivity of hair dermal papilla cells. Cell J. 2021;23(5):576–583. doi: 10.22074/cellj.2021.7352 EDN: DPJXAI
  69. Park BS, Choi HI, Huh G, Kim WS. Effects of exosome from adipose-derived stem cell on hair loss: a retrospective analysis of 39 patients. J Cosmet Dermatol. 2022;21(5):2282–2284. doi: 10.1111/jocd.14846 EDN: ZWDKQC
  70. Liang Y, Tang X, Zhang X, et al. Adipose mesenchymal stromal cell-derived exosomes carrying MiR-122-5p antagonize the inhibitory effect of dihydrotestosterone on hair follicles by targeting the TGF-β1/SMAD3 signaling pathway. Int J Mol Sci. 2023;24(6):5703. doi: 10.3390/ijms24065703 EDN: QWZHUY

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».