The effect of phototherapy on the expression of innate immunity genes in patients with psoriasis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Phototherapy is one of the most effective methods in the treatment of psoriasis, but the mechanism of its action on innate immunity has not been studied.

AIM: Investigation of the local expression profile of innate immunity factors in patients with psoriasis during phototherapy.

MATERIALS AND METHODS: The study included 31 patients diagnosed with inpatient psoriasis vulgaris. The material for the study was obtained from areas of affected and unaffected skin. Patients with vulgar psoriasis received a course of UVB-311 nm phototherapy lasting from 5 to 7 weeks with a total dose of 35.2 to 44.6 J/cm2. There were 30 healthy people in the control group. Gene expression analysis was performed before treatment and at the end of the phototherapy course. The data obtained were statistically processed.

RESULTS: According to the results of the study, gene expression data were obtained: for example, increased expression of the TLR2 and TLR9 genes was observed in the main group after treatment, as well as in samples of unaffected skin from patients. The increased level of the TLR4 gene expression was registered in unaffected skin samples from patients with psoriasis. The expression of the β-defensin 1 gene was elevated in unaffected skin and post-treatment skin. For the cathelicidin gene, there is a difference between the groups of affected and unaffected skin samples before treatment. The expression level of the IL-13 gene was higher before treatment.

CONCLUSION: The revealed local imbalance of factors of innate immunity can lead to a more severe course of the disease. The course of phototherapy leads to normalization of the expression profile of receptor and effector molecules of innate immunity, which leads to a stable positive clinical effect.

About the authors

Olga Yu. Olisova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: olisovaolga@mail.ru
ORCID iD: 0000-0003-2482-1754
SPIN-code: 2500-7989

д-р мед. наук, профессор, чл.-корр. РАН

Russian Federation, Moscow

Olga S. Yazkova

Central polyclinic

Email: olesha230808@mail.ru
ORCID iD: 0000-0002-9644-4778
SPIN-code: 9548-9076

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Elizaveta P. Bystritskaya

I. Mechnikov Research Institute of Vaccines and Sera

Email: lisabystritskaya@gmail.com
ORCID iD: 0000-0001-8430-1975
SPIN-code: 6769-2534
Russian Federation, Moscow

Tatiana I. Radchenko

Lomonosov Moscow State University

Email: tati.radchenko2004@gmail.com
ORCID iD: 0009-0007-2575-4158
Russian Federation, Moscow

Elizaveta I. Zhgelskaya

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: lizaderm@yandex.ru
ORCID iD: 0009-0003-9228-0686
Russian Federation, Moscow

Oxana A. Svitich

I.M. Sechenov First Moscow State Medical University (Sechenov University); I. Mechnikov Research Institute of Vaccines and Sera

Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-1757-8389
SPIN-code: 8802-5569

MD, Dr. Sci. (Medicine), corresponding member of the Russian Academy of Sciences

Russian Federation, Moscow; Moscow

References

  1. Parisi R, Symmons DP, Griffiths CE, Ashcroft DM; Identification and Management of Psoriasis and Associated ComorbidiTy (IMPACT) project team. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J Invest Dermatol. 2013;133(2):377–385. doi: 10.1038/jid.2012.339
  2. Polak K, Bergler-Czop B, Szczepanek M, et al. Psoriasis and gut microbiome: Current state of art. Int J Mol Sci. 2021;22(9):4529. doi: 10.3390/ijms22094529 EDN: JJAGVS
  3. Boehncke WH, Schön MP. Psoriasis. Lancet. 2015;386(9997):983–994. doi: 10.1016/s0140-6736(14)61909-7
  4. Girolomoni G, Strohal R, Puig L, et al. The role of IL-23 and the IL-23/Th17 immune axis in the pathogenesis and treatment of psoriasis. J Eur Acad Dermatol Venereol. 2017;31(10):1616–1626. doi: 10.1111/jdv.14433
  5. Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol. 2014;32:227–255. doi: 10.1146/annurev-immunol-032713-120225 EDN: SOVLAF
  6. Büchau AS, Gallo RL. Innate immunity and antimicrobial defense systems in psoriasis. Clin Dermatol. 2007;25(6):616–624. doi: 10.1016/j.clindermatol.2007.08.016
  7. Singh TP, Schön MP, Wallbrecht K, et al. Involvement of IL-9 in Th17-associated inflammation and angiogenesis of psoriasis. PloS One. 2013;8(1):e51752. doi: 10.1371/journal.pone.0051752
  8. Langan EA, Griffiths CE, Solbach W, et al. The role of the microbiome in psoriasis: Moving from disease description to treatment selection? Br J Dermatol. 2018;178(5):1020–1027. doi: 10.1111/bjd.16081
  9. Curry JL, Qin JZ, Bonish B, et al. Innate immune-related receptors in normal and psoriatic skin. Arch Pathol Lab Med. 2003;127(2):178–186. doi: 10.5858/2003-127-178-IIRRIN
  10. Carrasco S, Neves FS, Fonseca MH, et al. Toll-like receptor (TLR) 2 is upregulated on peripheral blood monocytes of patients with psoriatic arthritis: A role for a gram-positive inflammatory trigger? Clin Exp Rheumatol. 2011;29(6):958–962.
  11. Garcia-Rodriguez S, Arias-Santiago S, Perandrés-López R, et al. Increased gene expression of Toll-like receptor 4 on peripheral blood mononuclear cells in patients with psoriasis. J Eur Acad Dermatol Venereol. 2013;27(2):242–250. doi: 10.1111/j.1468-3083.2011.04372.x
  12. Gürel G, Sabah-Özcan S. Evaluation of Toll-like receptor expression profile in patients with psoriasis vulgaris. Gene. 2019;702:166–170. doi: 10.1016/j.gene.2019.03.058
  13. Prignano F, Lombardo G, Indino S, et al. Evaluation of expression of toll-like receptors 7 and 9, proliferation, and cytoskeletal biomarkers in plaque and guttate psoriasis: A pilot morphological study. Eur J Histochem. 2021;65(1):3218. doi: 10.4081/ejh.2021.3218
  14. Nakao M, Sugaya M, Fujita H, et al. TLR2 deficiency exacerbates imiquimod-induced psoriasis-like skin inflammation through decrease in regulatory T cells and impaired IL-10 production. Int J Mol Sci. 2020;21(22):8560. doi: 10.3390/ijms21228560
  15. Lande R, Gregorio J, Facchinetti V, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449(7162):564–569. doi: 10.1038/nature06116
  16. Miura S, Garcet S, Li X, et al. Cathelicidin antimicrobial peptide LL37 induces toll-like receptor 8 and amplifies IL-36γ and IL-17C in human keratinocytes. J Invest Dermatol. 2023;143(5):832–841.e4. doi: 10.1016/j.jid.2022.10.017 EDN: ZVIMEW
  17. Lao J, Xie Z, Qin Q, et al. Serum LL-37 and inflammatory cytokines levels in psoriasis. Immun Inflamm Dis. 2023;11(3):e802. doi: 10.1002/iid3.802
  18. Fry L, Baker BS, Powles AV, et al. Is chronic plaque psoriasis triggered by microbiota in the skin? Br J Dermatol. 2013;169(1):47–52. doi: 10.1111/bjd.12322
  19. Uzuncakmak TK, Karadag AS, Ozkanli S, et al. Alteration of tissue expression of human beta defensin-1 and human beta defensin-2 in psoriasis vulgaris following phototherapy. Biotech Histochem. 2020;95(4):243–248. doi: 10.1080/10520295.2019.1673901
  20. Bodoor K, Al-Qarqaz F, Heis LA, et al. IL-33/13 axis and IL-4/31 axis play distinct roles in inflammatory process and itch in psoriasis and atopic dermatitis. Clin Cosmet Investig Dermatol. 2020;13:419–424. doi: 10.2147/CCID.S257647
  21. Cancino-Díaz JC, Reyes-Maldonado E, Bañuelos-Pánuco CA, et al. Interleukin-13 receptor in psoriatic keratinocytes: Overexpression of the mRNA and underexpression of the protein. J Invest Dermatol. 2002;119(5):1114–1120. doi: 10.1046/j.1523-1747.2002.19509.x EDN: BEYVUJ

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. TLR gene expression levels by groups: * p <0.05; ** p <0.01; *** p <0.005. Source: Olisova O.Yu. et al., 2025.

Download (466KB)
3. Fig. 2. Antimicrobial peptide gene expression levels by groups: * p <0.05; ** p <0.01. Source: Olisova O.Yu. et al., 2025.

Download (325KB)
4. Fig. 3. IL-13 gene expression levels by groups: * p <0.05. Source: Olisova O.Yu. et al., 2025.

Download (176KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».