Angiogenesis in psoriasis as a therapeutic target (literature review)
- 作者: Kochergin N.G.1, Brezhneva A.A.1, Yazkova O.S.2, Fadeev A.A.1
-
隶属关系:
- Sechenov First Moscow State Medical University (Sechenov University)
- Central polyclinic
- 期: 卷 27, 编号 3 (2024)
- 页面: 348-359
- 栏目: DERMATOLOGY
- URL: https://journals.rcsi.science/1560-9588/article/view/262726
- DOI: https://doi.org/10.17816/dv627134
- ID: 262726
如何引用文章
详细
One of the characteristic features of psoriasis is increased vascularization in the psoriatic plaque. It is known that this process occurs as a result of pathological angiogenesis, which leads to an increase of blood vessels in the lesion, increased proliferation of endothelial cells, vasodilation and increased permeability of the vascular wall, facilitating penetration of immune cells and increasing inflammation. Many signaling molecules are involved in the process of angiogenesis in psoriasis. The most important indicator of the severity of pathological angiogenesis is endothelial vascular growth factor (VEGF). The issue of using blood serum analysis for endothelial vascular growth factor (VEGF) and diagnostic imaging techniques of the vascular network in psoriatic plaques to determine the severity of the process and the possibility of using additional treatment directions aimed at reducing vascularization is being considered. At the moment, the mechanisms of angiogenesis in psoriasis are being actively studied, and the possibilities of therapeutic influence on this link of pathogenesis are especially interesting.
The authors present an analysis of the current literature on this topic, and suggest possible available treatment strategies based on the data obtained. Further research in this direction is needed to optimize the therapy of psoriasis, the main purpose of which will be to reduce the duration of treatment and prolong the time of remission.
作者简介
Nikolay Kochergin
Sechenov First Moscow State Medical University (Sechenov University)
Email: nkocha@yandex.ru
ORCID iD: 0000-0001-7136-4053
SPIN 代码: 1403-3031
MD, Dr. Sci. (Med.), Professor
俄罗斯联邦, MoscowAnna Brezhneva
Sechenov First Moscow State Medical University (Sechenov University)
编辑信件的主要联系方式.
Email: anna-brezhneva@mail.ru
ORCID iD: 0009-0002-2489-1269
俄罗斯联邦, Moscow
Olga Yazkova
Central polyclinic
Email: olesha230808@mail.ru
ORCID iD: 0000-0002-9644-4778
SPIN 代码: 9548-9076
MD, Cand. Sci. (Med.)
俄罗斯联邦, MoscowAlexander Fadeev
Sechenov First Moscow State Medical University (Sechenov University)
Email: fadeevalek@yandex.ru
ORCID iD: 0009-0000-6619-5056
MD, Cand. Sci. (Med.)
俄罗斯联邦, Moscow参考
- Olisova OYu, Kochergin NG, Paramonov AA, et al. Clinical and genetic associations of T-cell receptors repertoire in psoriasis. Pathogenesis. 2023;21(2):47–54. EDN: KKGXKB doi: 10.25557/2310-0435.2023.02.47-54
- Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA. 2020;323(19):1945–1960. doi: 10.1001/jama.2020.4006
- Kaushik SB, Lebwohl MG. Psoriasis: Which therapy for which patient. Psoriasis comorbidities and preferred systemic agents. J Am Acad Dermatol. 2019;80(1):27–40. doi: 10.1016/j.jaad.2018.06.057
- Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci. 2019;20(6):1475. doi: 10.3390/ijms20061475
- Goldsmith LA, Katz SI, Gilchrist BA, et al. Fitzpatrick’s dermatology in clinical practice. Trans. from English. Ed. by N.N. Potekaev, A.N. Lvov. 2nd ed. Moscow: Izdatel’stvo Panfilova; 2015. Vol. 1. 1168 p. (In Russ).
- Ghoreschi K, Balato A, Enerbäck C, Sabat R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet. 2021;397(10275):754–766. doi: 10.1016/S0140-6736(21)00184-7
- Luengas-Martinez A, Paus R, Young HS. Antivascular endothelial growth factor-A therapy: A novel personalized treatment approach for psoriasis. Br J Dermatol. 2022;186(5):782–791. doi: 10.1111/bjd.20940
- Lee HJ, Hong YJ, Kim M. Angiogenesis in chronic inflammatory skin disorders. Int J Mol Sci. 2021;22(21):12035. doi: 10.3390/ijms222112035
- Coimbra S, Oliveira H, Reis F, et al. Interleukin (IL)-22, IL-17, IL-23, IL-8, vascular endothelial growth factor and tumour necrosis factor-α levels in patients with psoriasis before, during and after psoralen-ultraviolet A and narrowband ultraviolet B therapy. Br J Dermatol. 2010;163(6):1282–1290. doi: 10.1111/j.1365-2133.2010.09992.x
- Pritulo OA, Petrov AA. Comprehensive assessment of the dynamics of angiogenesis in patients with psoriasis treated with methotrexate. Vestnik dermatologii i venerologii. 2023;99(1):37–47. doi: 10.25208/vdv1387
- Hou H, Li J, Wang J, et al. ITGA9 inhibits proliferation and migration of dermal microvascular endothelial cells in psoriasis. Clin Cosmet Investig Dermatol. 2022;15:2795–2806. doi: 10.2147/CCID.S394398
- Zhou L, Wang J, Liang J, et al. Psoriatic mesenchymal stem cells stimulate the angiogenesis of human umbilical vein endothelial cells in vitro. Microvasc Res. 2021;136:104151. doi: 10.1016/j.mvr.2021.104151
- Socha M, Kicinski P, Feldo M, et al. Assessment of selected angiogenesis markers in the serum of middle-aged male patients with plaque psoriasis. Dermatol Ther. 2021;34(1):e14727. doi: 10.1111/dth.14727
- Hanssen SC, van der Vleuten CJ, van Erp PE, et al. The effect of adalimumab on the vasculature in psoriatic skin lesions. J Dermatolog Treat. 2019;30(3):221–226. doi: 10.1080/09546634.2018.1506082
- Dudley AC, Griffioen AW. Pathological angiogenesis: Mechanisms and therapeutic strategies. Angiogenesis. 2023;26(3):313–347. doi: 10.1007/s10456-023-09876-7
- Han Q, Niu X, Hou R, et al. Dermal mesenchymal stem cells promoted adhesion and migration of endothelial cells by integrin in psoriasis. Cell Biol Int. 2021;45(2):358–367. doi: 10.1002/cbin.11492
- Li J, Hou H, Zhou L, et al. Increased angiogenesis and migration of dermal microvascular endothelial cells from patients with psoriasis. Exp Dermatol. 2021;30(7):973–981. doi: 10.1111/exd.14329
- Hern S, Stanton AW, Mellor RH, et al. In vivo quantification of the structural abnormalities in psoriatic microvessels before and after pulsed dye laser treatment. Br J Dermatol. 2005;152(3):505–511. doi: 10.1111/j.1365-2133.2005.06435.x
- Gong J, Yang H, Qi D, Tang X. The association of serum vascular endothelial growth factor levels and psoriasis vulgaris: A protocol for systematic review and meta-analysis. Medicine (Baltimore). 2020;99(33):e21565. doi: 10.1097/MD.0000000000021565
- Mohta A, Mohta A, Ghiya BC. Assessing the association between psoriasis and cardiovascular ischemia: An investigation of vascular endothelial growth factor, cutaneous angiogenesis, and arterial stiffness. Indian Dermatol Online J. 2023;14(5):653–657. doi: 10.4103/idoj.idoj_246_23
- Zhu WJ, Li P, Wang L, Xu YC. Hypoxia-inducible factor-1: A potential pharmacological target to manage psoriasis. Int Immunopharmacol. 2020;86:106689. doi: 10.1016/j.intimp.2020.106689
- Griffioen AW, Bischoff J. Oxygen sensing decoded: A Nobel concept in biology. Angiogenesis. 2019;22(4):471–472. doi: 10.1007/s10456-019-09692-y
- Xian D, Song J, Yang L, et al. Emerging roles of redox-mediated angiogenesis and oxidative stress in dermatoses. Oxid Med Cell Longev. 2019;2019:2304018. doi: 10.1155/2019/2304018
- Luengas-Martinez A, Ismail D, Paus R, Young HS. Inhibition of vascular endothelial growth factor-A downregulates angiogenesis in psoriasis: A pilot study. Skin Health Dis. 2023;3(5):e245. doi: 10.1002/ski2.245
- Kuang YH, Lu Y, Liu YK, et al. Topical sunitinib ointment alleviates psoriasis-like inflammation by inhibiting the proliferation and apoptosis of keratinocytes. Eur J Pharmacol. 2018;824:57–63. doi: 10.1016/j.ejphar.2018.01.048
- Guillot X, Tordi N, Mourot L, et al. Cryotherapy in inflammatory rheumatic diseases: A systematic review. Expert Rev Clin Immunol. 2014;10(2):281–294. doi: 10.1586/1744666X.2014.870036
- Kurz B, Berneburg M, Bäumler W, Karrer S. Phototherapy: Theory and practice. J Dtsch Dermatol Ges. 2023;21(8):882–897. doi: 10.1111/ddg.15126
- Chua RA, Arbiser JL. The role of angiogenesis in the pathogenesis of psoriasis. Autoimmunity. 2009;42(7):574–579. doi: 10.1080/08916930903002461
- Olisova OYu, Kayumova LN, Smirnov KV, General cryotherapy with the use of cryocapsule ICEQUEEN in patients with various dermatoses. Russ J Skin Venereal Dis. 2017;20(1):15–20. EDN: YGTAIR doi: 10.18821/1560-9588-2017-20-1-15-20
- Allan R, Malone J, Alexander J, et al. Cold for centuries: A brief history of cryotherapies to improve health, injury and post-exercise recovery. Eur J Appl Physiol. 2022;122(5):1153–1162. doi: 10.1007/s00421-022-04915-5
- Hohenauer E, Costello JT, Deliens T, et al. Partial-body cryotherapy (-135ºC) and cold-water immersion (10ºC) after muscle damage in females. Scand J Med Sci Sports. 2020;30(3):485–495. doi: 10.1111/sms.13593
- Kujawski S, Newton JL, Morten KJ, Zalewski P. Whole-body cryostimulation application with age: A review. J Therm Biol. 2021;96:102861. doi: 10.1016/j.jtherbio.2021.102861
- Zembron-Lacny A, Morawin B, Wawrzyniak-Gramacka E, et al. Multiple cryotherapy attenuates oxi-inflammatory response following skeletal muscle injury. Int J Environ Res Public Health. 2020;17(21):7855. doi: 10.3390/ijerph17217855
- Tabisz H, Modlinska A, Kujawski S, et al. Whole-body cryotherapy as a treatment for chronic medical conditions? Br Med Bull. 2023;146(1):43–72. doi: 10.1093/bmb/ldad007
- Ho SS, Illgen RL, Meyer RW, et al. Comparison of various icing times in decreasing bone metabolism and blood flow in the knee. Am J Sports Med. 1995;23(1):74–76. doi: 10.1177/036354659502300112
- Knobloch K, Grasemann R, Spies M, Vogt PM. Midportion achilles tendon microcirculation after intermittent combined cryotherapy and compression compared with cryotherapy alone: A randomized trial. Am J Sports Med. 2008;36(11):2128–2138. doi: 10.1177/0363546508319313
补充文件
