Epidemic season 2021–2022: Frequency of co-infection by respiratory viral pathogens

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

BACKGROUND: This study was conducted to determine the characteristics of various viral respiratory pathogens spreading during the epidemic season 2021–2022 and the frequency of co-infection with SARS-CoV-2 and influenza.

AIM: To assess the development of the influenza epidemic and frequency of cases of co-infection with respiratory pathogens in patients with acute respiratory viral infections between 2021 and 2022.

MATERIALS AND METHODS: Traditional and hospital epidemiological surveillance methods for acute respiratory viral infections were used.

RESULTS: The epidemic season of 2021–2022 was characterized by the early activity of the influenza A(H3N2) virus and the emergence and rapid spread of the omicron variant of SARS-CoV-2. The distribution of different respiratory pathogens during the epidemic season 2021–2022 was clearly traced: SARS-CoV-2 (18.8%) was predominant, followed by influenza viruses (10.6%) and pathogens of other acute respiratory viral infections (0.4–3.7%). With respect to influenza A (H3N2) and B viruses, the heterogeneity of their populations and drift variability in relation to vaccine strains were noted.

DISCUSSION: The frequency of co-infection with various respiratory pathogens was low, i.e., it was no more than 0.1%according to traditional surveillance, and no more than 9.2% in the hospital surveillance. The rationale for updating the composition of influenza vaccines for the countries in the Northern Hemisphere for 2022–2023 season was identified.

CONCLUSION: At present, early diagnosis of influenza is important given the availability of effective drugs with a direct mechanism of action for the prevention and treatment of this pathogen. Timely use of anti-influenza drugs will reduce the risks of a severe course, complications, and death, including co-infection with SARS-CoV-2.

作者简介

Elena Burtseva

National Research Centre of Epidemiology and Microbiology

编辑信件的主要联系方式.
Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0003-2518-6801
SPIN 代码: 2707-1446

MD, Dr. Sci (Med.)

俄罗斯联邦, Moscow

Anna Panova

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-9322-6273
俄罗斯联邦, Moscow

Ludmila Kolobukhina

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0001-5775-3343
俄罗斯联邦, Moscow

Anna Ignatjeva

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0001-6206-2299
俄罗斯联邦, Moscow

Elena Kirillova

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0001-7977-7530
俄罗斯联邦, Moscow

Natalia Breslav

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-6946-5119
俄罗斯联邦, Moscow

Svetlana Trushakova

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-9610-3041
俄罗斯联邦, Moscow

Evgeniya Mukasheva

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-5688-5309
俄罗斯联邦, Moscow

Elena Feodoritova

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-1472-1357
俄罗斯联邦, Moscow

Kirill Krasnoslobodtsev

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0003-1745-9128
俄罗斯联邦, Moscow

Liliya Merkulova

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-7260-0879
俄罗斯联邦, Moscow

Irina Khlopova

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-7419-590X
俄罗斯联邦, Moscow

Lidiya Kisteneva

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0001-7336-409X
俄罗斯联邦, Moscow

Irina Kruzhkova

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-1983-481X
俄罗斯联邦, Moscow

Yuliya Levochkina

National Research Centre of Epidemiology and Microbiology; Clinical Hospital for Infectious Diseases № 2

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-7750-2311
俄罗斯联邦, Moscow; Moscow

Anastasia Krepkaia

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-7272-4011
俄罗斯联邦, Moscow

Aleksandra Rosatkevich

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0003-0008-8711
俄罗斯联邦, Moscow

Andrey Komissarov

Research institute of influenza

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0003-1733-1255
俄罗斯联邦, Saint Petersburg

Svetlana Yatsishina

Central Research institute of epidemiology of Rospotrebnadzor

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0003-4737-941X
俄罗斯联邦, Moscow

Andrey Pochtovyi

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0003-1107-9351
俄罗斯联邦, Moscow

Daria Kustova

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-8382-275X
俄罗斯联邦, Moscow

Vladimir Gushchin

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-9397-3762
俄罗斯联邦, Moscow

Marina Bazarova

Clinical Hospital for Infectious Diseases № 1

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0001-7322-7896
俄罗斯联邦, Moscow

Svetlana Smetanina

Clinical Hospital for Infectious Diseases № 1

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0003-3763-697X
俄罗斯联邦, Moscow

Natalia Tsvetkova

Clinical Hospital for Infectious Diseases № 2

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0003-3323-3401
俄罗斯联邦, Moscow

参考

  1. Lvov DK, Burtseva EI, Kolobukhina LV, et al. Peculiarities of the influenza and ARVI viruses circulation during epidemic season 2019–2020 in some regions of Russia. Problems of Virology. 2020;65(6):335–349. (In Russ). doi: 10.36233/0507-4088-2020-65-6-4
  2. Burtseva EI, Kolobukhina LV, Voronina OL, et al. Features of the circulation of ARVI pathogens during of emergence and widespread of SARS-CoV-2 in the 2018–2021. Epidemiology and Vaccinal Prevention. 2022;21(4):16–26. (In Russ). doi: 10.31631/2073-3046-2022-21-4-16-26
  3. Sominina AA, Danilenko DM, Stolyarov KA, et al. Interference of SARS-CoV-2 with other Respiratory Viral Infections agents during Pandemic. Epidemiology and Vaccinal Prevention. 2021;20(4): 28–39. (In Russ). doi: 10.31631/2073-3046-2021-20-4-28-39
  4. Yatsishina SB, Mamoshina MV, Elkina MA, et al. Prevalence of ARVI, influenza and COVID-19 pathogens in individuals without symptoms of respiratory infections. Problems of Virology. 2020; 65:267–276. (In Russ).
  5. Huang XB, Yuan L, Ye CX, et al. Epidemiological characteristics of respiratory viruses in patients with acute respiratory infections during 2009–2018 in southern China. Int J Infect Dis. 2020;98:21–32. doi: 10.1016/j.ijid.2020.06.051
  6. Sanz I, Perez D, Dominguez-Gill M, Lejarazude RO, Eiros JM. Coinfection of Influenza and other respiratory viruses are associated to children. An Pediatr (Engl Ed). 2022;96(4):334–341. doi: 10.1016/j.anpede.2021.03.002
  7. Zhou B, Lin X, Wang W, et al. Universal influenza B virus genomic amplification facilitates sequencing, diagnostics, and reverse genetics. J Clin Microbiol. 2014;52(5):1330–1337. doi: 10.1128/JCM.03265-13
  8. Zhou B, Donnelly ME, Scholes DT, et al. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J Virol. 2009;83(19):10309–103013. doi: 10.1128/JVI.01109-09
  9. The development of the influenza epidemic in the European region in 2021–2022 [Internet] [cited 2023 Apr 20]. Available from: https://www.who.int/teams/global-influenza-programme/surveillance-and-monitoring/influenza-surveillance-outputs.
  10. Recommendations on the composition of influenza vaccines for the countries of the Northern Hemisphere for the 2022–2023 season. Available on: https://www.who.int/influenza/vaccines/virus/recommendations/2022-23_north/en/.
  11. Martínez-Roig A, Salvadó M, Caballero-Rabasco MA, et al. Viral coinfection in childhood respiratory tract infections. Arch Bronconeumol. 2015;51(1):5–9. doi: 10.1016/j.arbres.2014.01.018
  12. Meligy B, Sayed A, Ismail DK, et al. Detection of viral acute lower respiratory tract infection in hospitalized infants using real-time PCR. Gaz Egypt Paediatr Assoc. 2016;64(1):13–19. doi: 10.1016/j.epag.2015.11.005
  13. Korsun NS, Angelova SG, Trifonova IT, et al. The Prevalence and Genetic Characterization of Human Metapneumovirus in Bulgaria, 2016–2019. Intervirology. 2021;64(4):194–202. doi: 10.1159/000516821
  14. Kim D, Quinn J, Pinsky B, Shah NH, Brown I. Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens. JAMA. 2020;323(20):2085–2086. doi: 10.1001/jama.2020.6266
  15. Nowak MD, Sordillo EM, Gitman MR, Paniz Mondolfi AE. Coinfection in SARS-CoV-2 infected patients: Where are influenza virus and rhinovirus/enterovirus? J Med Virol. 2020;92(10):1699–1700. doi: 10.1002/jmv.25953
  16. Cooksey GLS, Morales C, Linde L, et al. Severe Acute Respiratory Syndrome Coronavirus 2 and Respiratory Virus Sentinel Surveillance, California, USA, May 10, 2020-June 12, 2021. Emerg Infect Dis. 2022;28(1):9–19. doi: 10.3201/eid2801.211682
  17. Alhumaid S, Al Mutair A, Al Alawi Z, et al. Coinfections with Bacteria, Fungi, and Respiratory Viruses in Patients with SARS-CoV-2: A Systematic Review and Meta-Analysis. Pathogens. 2021;10(7):809. doi: 10.3390/pathogens10070809
  18. Dadashi M, Khaleghnejad S, Abedi Elkhichi P, et al. COVID-19 and Influenza Co-infection: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2021;8:681469. doi: 10.3389/fmed.2021.681469
  19. Aggarwal N, Potdar V, Vijay N, et al. SARS-CoV-2 and Influenza Virus Co-Infection Cases Identified through ILI/SARI Sentinel Surveillance: A Pan-India Report. Viruses. 2022;14(3):627. doi: 10.3390/v14030627
  20. Kinoshita T, Watanabe K, Sakurai Y, Nishi K, Yoshikawa R, Yasuda J. Co-infection of SARS-CoV-2 and influenza virus causes more severe and prolonged pneumonia in hamsters. Sci Rep. 2021;11(1):21259. doi: 10.1038/s41598-021-00809-2
  21. Zhang AJ, Lee AC, Chan JF, et al. Coinfection by Severe Acute Respiratory Syndrome Coronavirus 2 and Influenza A(H1N1)pdm09 Virus Enhances the Severity of Pneumonia in Golden Syrian Hamsters. Clin Infect Dis. 2021;72(12):e978-e992. doi: 10.1093/cid/ciaa1747

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Frequency of detection of positive Influenza samples, SARS-CoV-2 and ARVI during the epidemic season 2021–2022 in certain territories of the Russian Federation.

下载 (542KB)
3. Fig. 2. The frequency of co-infection with respiratory pathogens against the background of influenza and SARS-CoV-2 in hospitalized patients in the epidemic season 2021–2022.

下载 (410KB)

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


##common.cookie##