Epidemic season 2021–2022: Frequency of co-infection by respiratory viral pathogens

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: This study was conducted to determine the characteristics of various viral respiratory pathogens spreading during the epidemic season 2021–2022 and the frequency of co-infection with SARS-CoV-2 and influenza.

AIM: To assess the development of the influenza epidemic and frequency of cases of co-infection with respiratory pathogens in patients with acute respiratory viral infections between 2021 and 2022.

MATERIALS AND METHODS: Traditional and hospital epidemiological surveillance methods for acute respiratory viral infections were used.

RESULTS: The epidemic season of 2021–2022 was characterized by the early activity of the influenza A(H3N2) virus and the emergence and rapid spread of the omicron variant of SARS-CoV-2. The distribution of different respiratory pathogens during the epidemic season 2021–2022 was clearly traced: SARS-CoV-2 (18.8%) was predominant, followed by influenza viruses (10.6%) and pathogens of other acute respiratory viral infections (0.4–3.7%). With respect to influenza A (H3N2) and B viruses, the heterogeneity of their populations and drift variability in relation to vaccine strains were noted.

DISCUSSION: The frequency of co-infection with various respiratory pathogens was low, i.e., it was no more than 0.1%according to traditional surveillance, and no more than 9.2% in the hospital surveillance. The rationale for updating the composition of influenza vaccines for the countries in the Northern Hemisphere for 2022–2023 season was identified.

CONCLUSION: At present, early diagnosis of influenza is important given the availability of effective drugs with a direct mechanism of action for the prevention and treatment of this pathogen. Timely use of anti-influenza drugs will reduce the risks of a severe course, complications, and death, including co-infection with SARS-CoV-2.

About the authors

Elena I. Burtseva

National Research Centre of Epidemiology and Microbiology

Author for correspondence.
Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0003-2518-6801
SPIN-code: 2707-1446

MD, Dr. Sci (Med.)

Russian Federation, Moscow

Anna D. Panova

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-9322-6273
Russian Federation, Moscow

Ludmila V. Kolobukhina

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0001-5775-3343
Russian Federation, Moscow

Anna V. Ignatjeva

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0001-6206-2299
Russian Federation, Moscow

Elena S. Kirillova

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0001-7977-7530
Russian Federation, Moscow

Natalia V. Breslav

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-6946-5119
Russian Federation, Moscow

Svetlana V. Trushakova

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-9610-3041
Russian Federation, Moscow

Evgeniya A. Mukasheva

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-5688-5309
Russian Federation, Moscow

Elena L. Feodoritova

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-1472-1357
Russian Federation, Moscow

Kirill G. Krasnoslobodtsev

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0003-1745-9128
Russian Federation, Moscow

Liliya N. Merkulova

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-7260-0879
Russian Federation, Moscow

Irina N. Khlopova

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-7419-590X
Russian Federation, Moscow

Lidiya B. Kisteneva

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0001-7336-409X
Russian Federation, Moscow

Irina S. Kruzhkova

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-1983-481X
Russian Federation, Moscow

Yuliya S. Levochkina

National Research Centre of Epidemiology and Microbiology; Clinical Hospital for Infectious Diseases № 2

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-7750-2311
Russian Federation, Moscow; Moscow

Anastasia S. Krepkaia

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-7272-4011
Russian Federation, Moscow

Aleksandra G. Rosatkevich

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0003-0008-8711
Russian Federation, Moscow

Andrey B. Komissarov

Research institute of influenza

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0003-1733-1255
Russian Federation, Saint Petersburg

Svetlana B. Yatsishina

Central Research institute of epidemiology of Rospotrebnadzor

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0003-4737-941X
Russian Federation, Moscow

Andrey A. Pochtovyi

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0003-1107-9351
Russian Federation, Moscow

Daria D. Kustova

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-8382-275X
Russian Federation, Moscow

Vladimir A. Gushchin

National Research Centre of Epidemiology and Microbiology

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0002-9397-3762
Russian Federation, Moscow

Marina V. Bazarova

Clinical Hospital for Infectious Diseases № 1

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0001-7322-7896
Russian Federation, Moscow

Svetlana V. Smetanina

Clinical Hospital for Infectious Diseases № 1

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0003-3763-697X
Russian Federation, Moscow

Natalia A. Tsvetkova

Clinical Hospital for Infectious Diseases № 2

Email: elena-burtseva@yandex.ru
ORCID iD: 0000-0003-3323-3401
Russian Federation, Moscow

References

  1. Lvov DK, Burtseva EI, Kolobukhina LV, et al. Peculiarities of the influenza and ARVI viruses circulation during epidemic season 2019–2020 in some regions of Russia. Problems of Virology. 2020;65(6):335–349. (In Russ). doi: 10.36233/0507-4088-2020-65-6-4
  2. Burtseva EI, Kolobukhina LV, Voronina OL, et al. Features of the circulation of ARVI pathogens during of emergence and widespread of SARS-CoV-2 in the 2018–2021. Epidemiology and Vaccinal Prevention. 2022;21(4):16–26. (In Russ). doi: 10.31631/2073-3046-2022-21-4-16-26
  3. Sominina AA, Danilenko DM, Stolyarov KA, et al. Interference of SARS-CoV-2 with other Respiratory Viral Infections agents during Pandemic. Epidemiology and Vaccinal Prevention. 2021;20(4): 28–39. (In Russ). doi: 10.31631/2073-3046-2021-20-4-28-39
  4. Yatsishina SB, Mamoshina MV, Elkina MA, et al. Prevalence of ARVI, influenza and COVID-19 pathogens in individuals without symptoms of respiratory infections. Problems of Virology. 2020; 65:267–276. (In Russ).
  5. Huang XB, Yuan L, Ye CX, et al. Epidemiological characteristics of respiratory viruses in patients with acute respiratory infections during 2009–2018 in southern China. Int J Infect Dis. 2020;98:21–32. doi: 10.1016/j.ijid.2020.06.051
  6. Sanz I, Perez D, Dominguez-Gill M, Lejarazude RO, Eiros JM. Coinfection of Influenza and other respiratory viruses are associated to children. An Pediatr (Engl Ed). 2022;96(4):334–341. doi: 10.1016/j.anpede.2021.03.002
  7. Zhou B, Lin X, Wang W, et al. Universal influenza B virus genomic amplification facilitates sequencing, diagnostics, and reverse genetics. J Clin Microbiol. 2014;52(5):1330–1337. doi: 10.1128/JCM.03265-13
  8. Zhou B, Donnelly ME, Scholes DT, et al. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J Virol. 2009;83(19):10309–103013. doi: 10.1128/JVI.01109-09
  9. The development of the influenza epidemic in the European region in 2021–2022 [Internet] [cited 2023 Apr 20]. Available from: https://www.who.int/teams/global-influenza-programme/surveillance-and-monitoring/influenza-surveillance-outputs.
  10. Recommendations on the composition of influenza vaccines for the countries of the Northern Hemisphere for the 2022–2023 season. Available on: https://www.who.int/influenza/vaccines/virus/recommendations/2022-23_north/en/.
  11. Martínez-Roig A, Salvadó M, Caballero-Rabasco MA, et al. Viral coinfection in childhood respiratory tract infections. Arch Bronconeumol. 2015;51(1):5–9. doi: 10.1016/j.arbres.2014.01.018
  12. Meligy B, Sayed A, Ismail DK, et al. Detection of viral acute lower respiratory tract infection in hospitalized infants using real-time PCR. Gaz Egypt Paediatr Assoc. 2016;64(1):13–19. doi: 10.1016/j.epag.2015.11.005
  13. Korsun NS, Angelova SG, Trifonova IT, et al. The Prevalence and Genetic Characterization of Human Metapneumovirus in Bulgaria, 2016–2019. Intervirology. 2021;64(4):194–202. doi: 10.1159/000516821
  14. Kim D, Quinn J, Pinsky B, Shah NH, Brown I. Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens. JAMA. 2020;323(20):2085–2086. doi: 10.1001/jama.2020.6266
  15. Nowak MD, Sordillo EM, Gitman MR, Paniz Mondolfi AE. Coinfection in SARS-CoV-2 infected patients: Where are influenza virus and rhinovirus/enterovirus? J Med Virol. 2020;92(10):1699–1700. doi: 10.1002/jmv.25953
  16. Cooksey GLS, Morales C, Linde L, et al. Severe Acute Respiratory Syndrome Coronavirus 2 and Respiratory Virus Sentinel Surveillance, California, USA, May 10, 2020-June 12, 2021. Emerg Infect Dis. 2022;28(1):9–19. doi: 10.3201/eid2801.211682
  17. Alhumaid S, Al Mutair A, Al Alawi Z, et al. Coinfections with Bacteria, Fungi, and Respiratory Viruses in Patients with SARS-CoV-2: A Systematic Review and Meta-Analysis. Pathogens. 2021;10(7):809. doi: 10.3390/pathogens10070809
  18. Dadashi M, Khaleghnejad S, Abedi Elkhichi P, et al. COVID-19 and Influenza Co-infection: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2021;8:681469. doi: 10.3389/fmed.2021.681469
  19. Aggarwal N, Potdar V, Vijay N, et al. SARS-CoV-2 and Influenza Virus Co-Infection Cases Identified through ILI/SARI Sentinel Surveillance: A Pan-India Report. Viruses. 2022;14(3):627. doi: 10.3390/v14030627
  20. Kinoshita T, Watanabe K, Sakurai Y, Nishi K, Yoshikawa R, Yasuda J. Co-infection of SARS-CoV-2 and influenza virus causes more severe and prolonged pneumonia in hamsters. Sci Rep. 2021;11(1):21259. doi: 10.1038/s41598-021-00809-2
  21. Zhang AJ, Lee AC, Chan JF, et al. Coinfection by Severe Acute Respiratory Syndrome Coronavirus 2 and Influenza A(H1N1)pdm09 Virus Enhances the Severity of Pneumonia in Golden Syrian Hamsters. Clin Infect Dis. 2021;72(12):e978-e992. doi: 10.1093/cid/ciaa1747

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Frequency of detection of positive Influenza samples, SARS-CoV-2 and ARVI during the epidemic season 2021–2022 in certain territories of the Russian Federation.

Download (542KB)
3. Fig. 2. The frequency of co-infection with respiratory pathogens against the background of influenza and SARS-CoV-2 in hospitalized patients in the epidemic season 2021–2022.

Download (410KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies