Sensitivity of <>iStreptococcus pneumoniae to antibiotics and the sex of the patient: A systematic review and meta-analysis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

BACKGROUND: The spread of microbial resistance to antibiotics is a recent global problem, which has become more acute in recent years because of a significant increase in the consumption of antibiotics, against the background of the COVID-19 pandemic. A direct consequence of the spread of antibiotic-insensitive strains of pneumococci limits the treatment options for such patients and deterioration of the prognosis.

AIM: To determine whether sex is a factor associated with the development of diseases caused by antibiotic-resistant strains of Streptococcus pneumoniae.

MATERIALS AND METHODS: Using the electronic databases PubMed, ScienceDirect, and Google Scholar, a search was conducted for articles published from January 1980 to December 2020, and studies in English and Russian were selected. The selection of articles and meta-analysis was based on the recommendations of the PRISMA Group and MOOSE. After combining the data, the odds ratio (OR) was calculated with a 95% confidence interval (95% CI). Heterogeneity was assessed.

RESULTS: After applying the exclusion criteria, 41 publications covering 16635 patients with invasive and non-invasive forms of pneumococcal infection were selected for analysis. Of these, 36 case-control studies and 5 cross-sectional studies were identified. Accordingly, the sex of the patient does not affect the frequency of isolation of pneumococcal strains insensitive to penicillin (odds ratio [OR]=0.92, 95% confidence interval [CI] 0.82–1.03, I2=7%), resistant to penicillin (OR=0.85, 95% CI 0.67–1.07, I2=1%), and insensitive to erythromycin (OR=0.80, 95% CI 0.51–1.24, I2=0%). Male sex is associated with pneumococcal resistance to levofloxacin (OR=1.85, 95% CI 1.03–3.33, I2=0%).

CONCLUSIONS: The sex of the patient is not a factor associated with the isolation of S. pneumonia strains insensitive and resistant to penicillin and erythromycin. Moreover, the male sex probably increases the chance of isolation of levofloxacin-resistant pneumococci in adults with invasive pneumococcal infections.

作者简介

Sergey Semenov

Kazan State Medical University

Email: sergejsemenov596@gmail.com
ORCID iD: 0000-0003-3437-832X
SPIN 代码: 8774-6450
俄罗斯联邦, Kazan

Gulshat Khasanova

Kazan State Medical University

编辑信件的主要联系方式.
Email: gulshatra@mail.ru
ORCID iD: 0000-0002-1733-2576
SPIN 代码: 6704-2840
Scopus 作者 ID: 6507469219

MD, Dr. Sci. (Med.), Professor, Acad. RAS

俄罗斯联邦, Kazan

参考

  1. Progress in introduction of pneumococcal conjugate vaccine worldwide, 2000–2012. Wkly Epidemiol. 2013;88(17):173–180.
  2. Mayansky NA, Alyabyeva NM, Lazareva MA, et al. Antibiotic sensitivity, clonal and gray typical diversity of pneumococci in children with acute otitis media in Moscow. Clinical Microbiology and Antimicrobial Chemotherapy. 2016;18(2):84–92. (In Russ).
  3. Neuman MI, Kelley M, Harper MB, et al. Factors associated with antimicrobal resistence and mortality in pneumococcal bacteremia. J Emerg Med. 2007;32(4):349–357. doi: 10.1016/j.jemermed.2006.08.014
  4. Nestler MJ, Godbout E, Lee K, et al. Impact of COVID-19 on pneumonia-focused antibiotic use at an academic medical center. Infect Control Hosp Epidemiol. 2020;42(7):915–916. doi: 10.1017/ice.2020.362
  5. Buehrle DL, Decker BK, Wagener MM, et al. Antibiotic consumption and stewardship at a hospital outside of an early coronavirus disease 2019 epicenter. Antimicrob Agents Chemother. 2020; 64(11):e01011-20. doi: 10.1128/AAC.01011-20
  6. Garcia-Vidal C, Sanjuan G, Estela Moreno-García E, et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clin Microbiol Infect. 2021;27(1):83–88. doi: 10.1016/j.cmi.2020.07.041
  7. Sharov KS. SARS-CoV-2-related pneumonia cases in pneumonia picture in Russia in March-May 2020: Secondary bacterial pneumonia and viral co-infections. J Glob Health. 2020;10(2):e020504. doi: 10.7189/jogh.10.020504
  8. Semenov SA, Khasanova GR. Risk factors for the formation of Streptococcus pneumoniae resistance to antibiotics. Practical Medicine. 2020;18(6):113–118. (In Russ). doi: 10.32000/2072-1757-2020-6-113-118
  9. Metlay JP, Fishman NO, Joffe MM, et al. Macrolide resistance in adults with bacteremic pneumococcal pneumonia. Emerg Infect Dis. 2006;12(8):1223–1230. doi: 10.3201/eid1708.060017
  10. Zhu DM, Li QH, Shen Y, et al. Risk factors for quinolone-resistant Escherichia coli infection: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2020;9(1):2–11. doi: 10.1186/s13756-019-0675-3
  11. Li J, Li Y, Song N, Chen Y. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection: A meta-analysis. J Glob Antimicrob Resist. 2020;21:306–313. doi: 10.1016/j.jgar.2019.09.006
  12. Wu M, Tong X, Liu S, et al. Prevalence of methicillin-resistant Staphylococcus aureus in healthy Chinese population: A system review and meta-analysis. PLoS One. 2019;14(10):e0223599. doi: 10.1371/journal.pone.0223599
  13. Voor AF, Mourik K, Beishuizen B, et al. Acquisition of multidrug-resistant Enterobacterales during international travel: a systematic review of clinical and microbiological characteristics and meta-analyses. Antimicrob Resist Infect Control. 2020;9(1):71–85. doi: 10.1186/s13756-020-00733-6
  14. Meyer JM, Silliman NP, Wang W, et al. Risk factors for Helicobacter pylori resistance in the United States: The surveillance of H. pylori antimicrobial resistance partnership (SHARP) study, 1993–1999. Ann Intern Med. 2002;136(1):13–24. doi: 10.7326/0003-4819-136-1-200201010-00008
  15. Zhao P, Li XJ, Zhang SF, et al. Social behaviour risk factors for drug resistant tuberculosis in mainland China: a meta-analysis. J Int Med Res. 2012;40(2):436–445. doi: 10.1177/147323001204000205
  16. Larramendy S, Deglaire V, Dusollier P, et al. Risk factors of extended-spectrum beta-lactamases-producing Escherichia coli community acquired urinary tract infections: a systematic review. Infect Drug Resist. 2020;13:3945–3955. doi: 10.2147/IDR.S269033
  17. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339(1):е2535. doi: 10.7326/0003-4819-151-4-200908180-00135
  18. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–2012. doi: 10.1001/jama.283.15.2008
  19. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–605. doi: 10.1007/s10654-010-9491-z
  20. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0, 2021 [Internet]. EUCAST. 2021. Available from: http://www.eucast.org Accessed: Nov 21, 2022.
  21. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. CLSI supplement M100. 30th ed. Wayne (PA): CLSI; 2020. 332 p.
  22. Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol. 2001;54(10):1046–1055. doi: 10.1016/s0895-4356(01)00377-8
  23. Doi SAR, Barendregt JJ, Khan S, et al. Advances in the meta-analysis of heterogeneous clinical trials II: The quality effects model. Contemp Clin Trials. 2015;45(Pt A):123–129. doi: 10.1016/j.cct.2015.05.010
  24. Tajima T, Sato Y, Toyonaga Y, et al. Nationwide survey of the development of drug-resistant pathogens in the pediatric field in 2007 and 2010: drug sensitivity of Streptococcus pneumoniae in Japan. J Infect Chemother. 2013;19(3):510–516. doi: 10.1007/s10156-013-0593-x
  25. Nava JM, Bella F, Garau J, et al. Predictive factors for invasive disease due to penicillin-resistant Streptococcus pneumoniae: a population-based study. Clin Infect Dis. 1994;19(5):884–890. doi: 10.1093/clinids/19.5.884
  26. Tsai HY, Lauderdale TL, Wang JT, et al. Updated antibiotic resistance and clinical spectrum of infections caused by Streptococcus pneumoniae in Taiwan: emphasis risk factors for penicillin nonsusceptibilities. J Microbiol Immunol Infect. 2013;46(5):345–351. doi: 10.1016/j.jmii.2012.07.012
  27. Hotomi M, Togawa A, Kono M, et al. PspA family distribution, antimicrobial resistance and serotype of Streptococcus pneumoniae isolated from upper respiratory tract infections in Japan. Plos One. 2013;8(3):e58124. doi: 10.1371/journal.pone.0058124
  28. Ishida T, Maniwa K, Kagioka H, et al. Antimicrobial susceptibilities of Streptococcus pneumoniae isolated from adult patients with community-acquired pneumonia in Japan. Respirology. 2008;13(2):240–246. doi: 10.1111/j.1440-1843.2007.01214x
  29. Rowland KE, Turnidg JD. The impact of penicillin resistance on the outcome of invasive Streptococcus pneumoniae infection in children. Aust N Z J Med. 2000;30(4):441–449. doi: 10.1111/j.1445-5994.2000 tb02049.x
  30. Setchanova L. Clinical isolates and nasopharyngeal carriage of antibiotic-resistant Streptococcus pneumoniae in hospital for infectious diseases, Sofia, Bulgaria, 1991–1993. Microb Drug Resist. 1995;1(1):79–84. doi: 10.1089/mdr.1995.1.79
  31. Levin AS, Sessegolo JF, Teixeira LM, et al. Factors associated with penicillin-nonsusceptible pneumococcal infections in Brazil. Braz J Med Biol Res. 2003;36(6):807–813. doi: 10.1590/s0100-879x2003000600017
  32. Denno D, Frimpong E, Gregory M, Steele R. Nasopharyngeal carriage and susceptibility patterns of Streptococcus pneumoniae in Kumasi, Ghana. West Afr J Med. 1996;21(3):233–236.
  33. Yayan J. The comparative development of elevated resistance to macrolides in community-acquired pneumonia caused by Streptococcus pneumoniae. Drug Des Devel Ther. 2014;8:1733–1743. doi: 10.2147/DDDT.S71349
  34. Pallares R, Gudiol F, Linares J, et al. Risk factors and response to antibiotic therapy in adults with bacteremic pneumoniae caused by penicillin-resistant pneumococci. N Engl J Med. 1987;317(1):18–22. doi: 10.1056/NEJM198707023170104
  35. Clavo-Sanchez AJ, Giron-Gonzalez J, Lopez-Prieto D, et al. Multivariate analysis of risk factors for infection due to penicillin-resistant and multidrug-resistant Streptococcus pneumoniae: a multicenter study. Clin Infect Dis. 1997;24(6):1052–1059. doi: 10.1086/513628
  36. Kellner JD, Scheifele DW, Halperin SA, et al. Outcome of penicillin-nonsusceptible Streptococcus pneumoniae meningitis: a nested case-control study. Pediatr Infect Dis J. 2002;21(10): 903–909. doi: 10.1097/00006454-200210000-00004
  37. Adwan K, Abu-Hasan N, Hamdan A, Al-Khalili S. High incidence of penicillin resistance amongst clinical isolates of Streptococcus pneumoniae in northern Palestine. J Med Microbiol. 1999;48(12): 1107–1110. doi: 10.1099/00222615-48-12-1107
  38. Kronenberger CB, Hoffman RE, Lezotte DC, et al. Invasive penicillin-resistant pneumococcal infections: a prevalence and historical cohort study. Emerg Infect Dis. 1996;2(2):121–124. doi: 10.3201/eid0202.960207
  39. Mannheimer SB, Riley LW, Roberts RB. Association of penicillin-resistant pneumococci with residence in a pediatric chronic care facility. J Infect Dis. 1996;174(3):513–519. doi: 10.1093/infdis/174.3.513
  40. Fairchok MP, Ashton WS, Fischer GW. Carriage of penicillin-resistant pneumococci in a military population in Washington, DC: risk factors and correlation with clinical isolates. Clin Infect Dis. 1996;22(6):966–972. doi: 10.1093/clinids/22.6.966
  41. Haddad J, Saiman L, San Gabriel P, et al. Nonsusceptible Streptococcus pneumoniae in children with chronic otitis media with effusion and recurrent otitis media undergoing ventilating tube placement. Pediatr Infect Dis J. 2000;19(5):432–427. doi: 10.1097/00006454-200005000-00008
  42. Metlay JP, Hofmann J, Cetron MS, et al. Impact of penicillin susceptibility on medical outcomes for adult patients with bacteremic pneumococcal pneumonia. Clin Infect Dis. 2000;30(3):520–528. doi: 10.1086/313716
  43. Roberts RB, Tomasz A, Corso A, et al. Penicillin-resistant Streptococcus pneumoniae in metropolitan New York hospitals: case control study and molecular typing of resistant isolates. Microb Drug Resist. 2001;7(2):137–152. doi: 10.1089/10766290152045011
  44. Klepser ME, Klepser DG, Ernst EJ, et al. Health care resource utilization associated with treatment of penicillin-susceptible and -nonsusceptible isolates of Streptococcus pneumoniae. Pharmacotherapy. 2003;23(3):349–359. doi: 10.1592/phco.23.3.349.32105
  45. Ruhe JJ, Hasbun R. Streptococcus pneumoniae bacteremia: duration of previous antibiotic use and association with penicillin resistance. Clin Infect Dis. 2003;36(9):1132–1138. doi: 10.1086/374556
  46. Dejthevaporn C, Vibhagool A, Thakkinstian A, et al. Risk factors for penicillin-resistant Streptococcus pneumoniae acquisition in patients in Bangkok. Southeast Asian J Trop Med Public Health. 2000;31(4):679–683.
  47. Chen S, Yen M, Chiu C, et al. Clinical observation of meningitis caused by penicillin-susceptible and -non-susceptible Streptococcus pneumoniae in Taiwanese children. Ann Trop Paediatr. 2006;26(3): 181–185. doi: 10.1179/146532806X120264
  48. Ciftci E, Dogru U, Aysev D, et al. Investigation of risk factors for penicillin-resistant Streptococcus pneumoniae carriage in Turkish children. Pediatr Int. 2001;43(4):385–390. doi: 10.1046/j.1442-200x.2001.01422x
  49. Muhlemann K, Matter HC, Tauber MG, et al. Nationwide surveillance of nasopharyngeal Streptococcus pneumoniae isolates from children with respiratory infection, Switzerland, 1998–1999. J Infect Dis. 2003;187(4):589–596. doi: 10.1086/367994
  50. Bedos JP, Chevret S, Chastang C, et al. Epidemiological features of and risk factors for infection by Streptococcus pneumoniae strains with diminished susceptibility to penicillin: findings of a French survey. Clin Infect Dis. 1996;22(1):63–72. doi: 10.1093/clinids/22.1.63
  51. Buie KA, Klugman KP, von Gottberg A, et al. Gender as a risk factor for both antibiotic resistance and infection with pediatric serogroups/serotypes, in HIV-infected and -uninfected adults with pneumococcal bacteremia. J Infect Dis. 2004;189(11):1996–2000. doi: 10.1086/386548
  52. Lee HJ, Park JY, Jang SH, et al. High incidence of resistance to multiple antimicrobials in clinical isolates of Streptococcus pneumoniae from a university hospital in Korea. Clin Infect Dis. 1995;20(4):826–835. doi: 10.1093/clinids/20.4.826
  53. Kim BN, Bae LG, Kim MN, et al. Risk factors for penicillin resistance and mortality in Korean adults with Streptococcus pneumoniae bacteremia. Eur J Clin Microbiol Infect Dis. 2002;21(1):35–42. doi: 10.1007/s10096-001-0650-8
  54. Song JS, Choe PG, Song KH, et al. Risk factors for 30-day mortality in adult patients with pneumococcal bacteraemia, and the impact of antimicrobial resistance on clinical outcomes. Epidemiol Infect. 2011;140(7):1267–1276. doi: 10.1017/S0950268811001816
  55. Yanagihara K, Otsu Y, Ohno H, et al. Clinical characteristics of pneumonia caused by penicillin resistant and sensitive Streptococcus pneumoniae in Japan. Intern Med. 2004;43(11):1029–1033. doi: 10.2169/internalmedicine.43.1029
  56. Karlowsky JA, Adam HJ, Golden AR, et al. Antimicrobial susceptibility testing of invasive isolates of Streptococcus pneumoniae from Canadian patients: the SAVE study, 2011–15. J Antimicrob Chemother. 2018;73(7):vii5–vii11. doi: 10.1093/jac/dky156
  57. Gomez-Barreto D, Calderon-Jaimes E, Rodriguez RS et al. Clinical outcome of invasive infections in children caused by highly penicillin-resistant Streptococcus pneumoniae compared with infections caused by penicillin-susceptible strains. Arch Med Res. 2000;31(6):592–598. doi: 10.1016/s0188-4409(00)00244-7
  58. Ruhe JJ, Myers L, Mushatt D, et al. High-level penicillin-nonsusceptible Streptococcus pneumoniae bacteremia: identification of a low-risk subgroup. Clin Infect Dis. 2004;38(4):508–514. doi: 10.1086/381197
  59. Feldman C, Glatthaar M, Morar R, et al. Bacteremic pneumococcal pneumonia in HIV-seropositive and HIV-seronegative adults. Chest. 1999;116(1):107–114. doi: 10.1378/chest.116.1.107
  60. Kang CI, Song JH, Huh K, et al. Risk factors for levofloxacin-nonsusceptible Streptococcus pneumoniae in community-acquired pneumococcal pneumonia: a nested case-control study. Eur J Clin Microbiol Infect Dis. 2014;33(1):55–59. doi: 10.1007/s10096-013-1928-3
  61. Seok H, Kang CI, Huh K, et al. Risk factors for community-onset pneumonia caused by levofloxacin-nonsusceptible Streptococcus pneumoniae. Microb Drug Resist. 2018;24(9):1412–1416. doi: 10.1089/mdr.2017.0416
  62. Isea-Pena MC, Sanz-Moreno JC, Esteban J, et al. Risk factors and clinical significanse of invasive infections caused by levofloxacin-resistant Streptococcus pneumoniae. Infection. 2013;41(5):935–939. doi: 10.1007/s15010-013-0481-4
  63. Beekmann SE, Diekema DJ, Heilmann KP, et al. Macrolide use identified as risk factor for macrolide-resistant Streptococcus pneumoniae in a 17-center case-control study. Eur J Clin Microbiol Infect Dis. 2006;25(5):335–339. doi: 10.1007/s10096-006-0137-8
  64. Kim L, McGee L, Tomczyk S, et al. Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre- and post-conjugate vaccine eras: a United States perspective. Clin Microbiol Rev. 2016;29(3):525–552. doi: 10.1128/CMR.00058-15
  65. Hong J, Chao Q, Yanping Z, et al. Biochanin A partially restores the activity of ofloxacin and ciprofloxacin against topoisomerase IV mutation-associated fluoroquinolone-resistant Ureaplasma species. J Med Microbiol. 2017;66(11):1545–1553. doi: 10.1099/jmm.0.000598

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Strategy of search and selection of literature data for inclusion in meta-analysis.

下载 (588KB)
3. Fig. 2. Forest-plot: meta-analysis of the sensitivity of pneumococci to penicillin and the male sex of the patient. Events — number of cases (insensitive strains); Total — total number of patients; Weight — weighted effect size; Odds Ratio — odds ratio; M-H — Mantel–Hensel criterion; Random — random effects model; 95% CI — 95% confidence interval.

下载 (917KB)
4. Fig. 3. Forest-plot: meta-analysis of pneumococcal resistance to penicillin and the male sex of the patient. Events — number of cases (resistant strains); Total — total number of patients; Weight — weighted effect size; Odds Ratio — odds ratio; M–H — Mantel–Hensel criterion; Random — random effects model; 95% CI — 95% confidence interval.

下载 (469KB)
5. Fig. 4. Forest-plot: meta-analysis of pneumococcal resistance to levofloxacin and the male sex of the patient. Events — number of cases (resistant strains); Total — total number of patients; Weight — weighted effect size; Odds Ratio — odds ratio; M–H — Mantel–Hensel criterion; Random — random effects model; 95% CI — 95% confidence interval.

下载 (385KB)
6. Fig. 5. Forest-plot: meta-analysis of the sensitivity of pneumococci to macrolides and the male sex of the patient. Events — number of cases (resistant strains); Total — total number of patients; Weight — weighted effect size; Odds Ratio — odds ratio; M–H — Mantel–Hensel criterion; Random — random effects model; 95% CI — 95% confidence interval.

下载 (380KB)

版权所有 © Eco-vector, 2022


 


##common.cookie##