Significance of interspecies and intraspecies interactions of microorganisms as a sub-organism level in the hierarchy of the epidemic process

Cover Page

Cite item

Full Text

Abstract

Currently, the epidemic process is considered a complex multilevel system, which involves the suborganismic (i.e., tissue, cellular, and molecular), organismic, and socio-ecosystem (population). In the human population, many pathogenic microorganisms circulate and may cause disease in humans simultaneously. As a rule, they exist in an associated state – a universal phenomenon for the vast majority of representatives of the microworld. However, possible interrelationships between them and their reflection in the epidemic development process and its `manifestations, as a rule, has not been taken into account. In this study, based on an analysis of publications on the results of our own research by the authors and world literature, at the sub-organism level of the epidemic process there is an active inter- and intraspecies interaction among representatives of different types of microorganisms, realized through integration-competitive mechanisms. This interaction is reflected both at the organism and population levels of the epidemic process. Therefore, when conducting epidemiological studies, an integrative approach is needed to take into account processes happening at a suborganism level. Understanding that microorganisms actively interact with each other will significantly increase our ability to develop new approaches to protect organisms from infections, as well as adequately predict the occurrence and development of an epidemic.

About the authors

Anatoly A. Yakovlev

Somov Institute of Epidemiology and Microbiology; Pacific State Medical University

Email: yakovlev-epid@yandex.ru
ORCID iD: 0000-0002-7008-3804
SPIN-code: 8049-7571
Scopus Author ID: 57211917335

MD, PhD, Professor

Russian Federation, Vladivostok

Alexey V. Rakov

Somov Institute of Epidemiology and Microbiology

Author for correspondence.
Email: alexeyrakov@mail.ru
ORCID iD: 0000-0003-1917-9189
SPIN-code: 5819-3561
Scopus Author ID: 54792230300
ResearcherId: A-2584-2012

MD, PhD

Russian Federation, Vladivostok

Ekaterina S. Pozdeeva

Pacific State Medical University

Email: ka1383@mail.ru
ORCID iD: 0000-0002-5507-9751
SPIN-code: 6872-5720
Scopus Author ID: 57201197327

MD, PhD

Russian Federation, Vladivostok

References

  1. Fernandez L, Mercader JM, Planas-Fèlix M, Torrents D. Adaptation to environmental factors shapes the organization of regulatory regions in microbial communities. BMC Genomics. 2014;15(1):877. doi: 10.1186/1471-2164-15-877
  2. Comolli LR. Intra- and inter-species interactions in microbial communities. Front Microbiol. 2014;(5):629. doi: 10.3389/fmicb.2014.00629
  3. Almand EA, Moore MD, Jaykus LA. Virus-bacteria interactions: an emerging topic in human infection. Viruses. 2017;9(3):58. doi: 10.3390/v9030058
  4. Giaouris E, Heir E, Desvaux M, et al. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol. 2015;(6):841. doi: 10.3389/fmicb.2015.00841
  5. Miller GG. Biological significance of microbial associations [Biologicheskoe znachenie assotsiatsii mikroorganizmov]. Annals of the Russian Academy of medical sciences. 2000;(1):45–51. (In Russ).
  6. Selivanov AA. Ecology of human adenoviruses [Ekologiya adenovirusov cheloveka]. Annals of the Russian Academy of medical sciences. 1983;(5):40−44. (In Russ).
  7. Belov AB. Correlation of infection introduction and internal reservoirs of pathogens in the epidemic process. Proceedings of the nauchno-prakt. konferentsiya «Teoreticheskie i prakticheskie aspekty sovremennoi ehpidemiologii»; January 28, 2009. Moscow, 2009. P. 32–44. (In Russ).
  8. Nadaraya GP. The problem of simultaneous spread of various infections (integration epidemiology). Tbilisi; 1980. (In Russ).
  9. Andreev IA. Human and bacterial world: problems of interaction [Chelovek i bakterial’nyi mir: problemy vzaimodeistviya]. Vestnik Rossijskoj akademii nauk. 2009;79(1):41−49. (In Russ).
  10. Larin FI, Zhukova LI, Lebedev VV, Rafeenko GK. Interference interaction of viruses in the regulation of an epidemic process. Epidemiology and infectious diseases. 2012;(1):25−29. (In Russ).
  11. Pozdeeva ES, Yakovlev AA. Integratsionnyi metod v epidemiologicheskoi diagnostike gepatitov B i C na modeli Primorskogo kraya. Saarbrucken: Lambert; 2012. (In Russ).
  12. Chekunina SN, Yakovlev AA, Kolpakov SL. Epidemiological assessment of the integrative and competitive relations between hepatitis A and shigellosis impact on the epidemic process of the infection evolution. Pacific Medical Journal. 2015;(3):35–38. (In Russ).
  13. Yakovlev AA, Kolpakov SL. Streptococcal infection in seafarers (marine epidemiology). Vladivostok: Medicina DV; 2013. (In Russ).
  14. Yakovlev AA, Lapteva NI. Integration epidemiology of infections with a hemocontact transmission mechanism (HIV, hepatitis B and C) on the model of the Republic of Sakha (Yakutia). Vladivostok: Medicina DV; 2016. (In Russ).
  15. Yakovlev AA, Burnasheva LS, Zhdanova SN. Integration epidemiology of tuberculosis and HIV infection (based on the model of the Republic of Sakha (Yakutia). Vladivostok: Medicina DV; 2017. (In Russ).
  16. Cherkassky BL. System approach in epidemiology. Moscow: Meditsina; 1988. (In Russ).
  17. Yakovlev AA, Pozdeyeva YS. The need for systems approach to studying the concomitant forms of viral hepatitides. Epidemiology and Infectious Diseases. 2010;15(4):54–57. (In Russ). doi: https://doi.org/10.17816/EID40509
  18. Yakovlev AA. The concept of integration-competitive development of epidemic process. Pacific Medical Journal. 2006;(3):10–14. (In Russ).
  19. Yakovlev AА, Pozdeeva ES. Possible mechanisms of self-regulation of parasitic systems in the biogeocenosis. Annals of the Russian Academy of Medical Sciences. 2018;73(3):184–194. (In Russ). doi: 10.15690/vramn880
  20. Schmalhausen II. Cybernetic questions of biology. Novosibirsk: Nauka; 1968. (In Russ).
  21. Gromashevsky LV. General epidemiology. Moscow: Meditsina; 1965. (In Russ).
  22. Belyakov VD, Yafaev RH. Epidemiology. Moscow: Meditsina; 1989. (In Russ).
  23. Litvin VYu, Ginzburg AL. Integrative processes in modern epidemiology. Journal of Microbiology Epidemiology Immunobiology. 2002;(4):63–72. (In Russ).
  24. Baroyan OV, Porter DR. The Problem of mixed infections. In: Baroyan OV, Porter DR. International and national aspects of modern epidemiology and microbiology. Moscow: Meditsina; 1975. (In Russ).
  25. Belaya OB, Belaya YuB. The Problem of mixed infections and their diagnostics. In: Belaya OB, Belaya YuB. Mixed infections. Moscow; 1986. (In Russ).
  26. Nechaev VV, Ivanov AK, Panteleev AM. Socially significant infections. Part II. Saint Petersburg: Beresta; 2011. (In Russ).
  27. Savilov ED, Kolesnikov SI, Briko NI. The comorbidity in epidemiology – new trend in public health research. Journal of Microbiology Epidemiology Immunobiology. 2016;(4):66–75. (In Russ). doi: 10.36233/0372-9311-2016-4-66-75
  28. Shkarin VV, Blagonravova AS. Epidemiological features of combined infections. Nizhny Novgorod; 2017. (In Russ).
  29. Buharin OV. Symbiotic interactions of microorganisms during infection. Journal of Microbiology Epidemiology Immunobiology. 2013;(1):93–97. (In Russ).
  30. Pan’kov AS. Peculiarities of influenza bacterial interactions. Izvestia Orenburg state agrarian university. 2011;(2):278–281. (In Russ).
  31. Bukharin OV, Lobakova ES, Nemtseva NV, Cherkasov SV. Associative symbiosis. Yekaterinburg: Ural Branch of the Russian Academy of Sciences; 2007. (In Russ).
  32. Bel’skij VV, Shatalova EV. The reciprocal effect of the causative agents in a mixed infection in burn injury. Journal of Microbiology Epidemiology Immunobiology. 1999;(4):3–7 (In Russ).
  33. Gincburg AL, Il’ina TO, Romanova JuM. “QUORUM SENSING” or social behavior of bacteria. Journal of Microbiology Epidemiology Immunobiology. 2003;(5):86–93. (In Russ).
  34. Nikolaev YuA. Distant information interactions in bacteria [Distantnye informatsionnye vzaimodeistviya u bakterii]. Vestnik Rossijskoj akademii nauk. 2000;(5):597–605. (In Russ).
  35. Smillie CS, Smith MB, Friedman J, et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature. 2011;480(7376):241–244. doi: 10.1038/nature10571
  36. Romanova YuM, Ilina TS, Ginzburg AL. Mobile genetic elements and their role in the evolution of pathogenic bacteria [Mobil’nye geneticheskie ehlementy i ikh rol’ v ehvolyutsii patogennykh bakterii]. Annals of the Russian Academy of medical sciences. 2001;(11):15–20. (In Russ).
  37. Christensen BB, Sternberg C, Andersen JB, et al. Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol. 1998;64(6):2247–2255. doi: 10.1128/AEM.64.6.2247-2255.1998
  38. Gorbakov VV, Hazanov AI, Blohina IP, et al. Natural course of combined hepatitis B and C [Estestvennoe techenie sochetannykh gepatitov В i С]. Clinical Microbiology and Antimicrobial Chemotherapy. 2003;3(3):21–23. (In Russ).
  39. Yakovlev AA, Savilov ED. Problematic issues of General epidemiology. Novosibirsk: Nauka; 2015. (In Russ).
  40. Bai L, Zhao Y, Dong J, et al. Co-infection of influenza A virus enhances SARS-CoV-2 infectivity. bioRxiv. 2020;(2020):10.14.335893. doi: 10.1101/2020.10.14.335893
  41. Mancini DA, Alves RC, Mendonça RM, et al. Influenza virus and proteolytic bacteria co-infection in respiratory tract from individuals presenting respiratory manifestations. Rev Inst Med Trop Sao Paulo. 2008;50(1):41–46. doi: 10.1590/s0036-46652008000100009
  42. Dubrovina TYa, Grabovskaya KB, Ivanova IA. Lethal synergy of virus-bacterial infections (model: influenza-Streptococcus) [Letal’nyi sinergizm virus-bakterial’nykh infektsii (model’: gripp-streptokokk)]. Annals of the Russian Academy of medical sciences. 1989;(11):17–22. (In Russ).
  43. Hahm B, Arbour N, Oldstone MB. Measles virus interacts with human SLAM receptor on dendritic cells to cause immunosuppression. Virology. 2004;323(2):292–302. doi: 10.1016/j.virol.2004.03.011
  44. Servet-Delprat C, Vidalain PO, Bausinger H, et al. Measles virus induces abnormal differentiation of CD40 ligand-activated human dendritic cells. J Immunol. 2000;164(4):1753–1760. doi: 10.4049/jimmunol.164.4.1753
  45. Slifka MK, Homann D, Tishon A, et al. Measles virus infection results in suppression of both innate and adaptive immune responses to secondary bacterial infection. J Clin Invest. 2003;111(6):805–810. doi: 10.1172/JCI13603
  46. Barton ES, White DW, Cathelyn JS, et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature. 2007;447(7142):326−329. doi: 10.1038/nature05762
  47. Kuss SK, Best GT, Etheredge CA, et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science. 2011;334(6053):249–252. doi: 10.1126/science.1211057
  48. Ichinohe T, Pang IK, Kumamoto Y, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA. 2011;108(13):5354–5359. doi: 10.1073/pnas.1019378108
  49. Wilks J, Golovkina T. Influence of microbiota on viral infections. PLOS Pathog. 2012;8(5):e1002681. doi: 10.1371/journal.ppat.1002681
  50. Kuz’min AV. Mikrobiologicheskie i ehpidemiologicheskie osobennosti psevdotuberkuleza v Primorskom krae v sovremennyi period [dissertation abstract]. Vladivostok; 1997. Available from: https://search.rsl.ru/ru/record/01000048905. (In Russ).
  51. Rakov AV, Yakovlev AA, Kuznetsova NA. Interaction of Salmonella enteritidis and Salmonella typhimurium in microbial association formed by them in in vitro experiment. Bull Exp Biol Med. 2019;(7):80–82. doi: 10.1007/s10517-019-04649-z
  52. Faruque SM, Mekalanos JJ. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence. 2012;3(7):556–565. doi: 10.4161/viru.22351
  53. Høiby N. A short history of microbial biofilms and biofilm infections. APMIS. 2017;125(4):272–275. doi: 10.1111/apm.12686
  54. Yang L, Liu Y, Wu H, et al. Current understanding of multi-species biofilms. Int J Oral Sci. 2011;3(2):74–81. doi: 10.4248/IJOS11027
  55. Elias S, Banin E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev. 2012;36(5):990–1004. doi: 10.1111/j.1574-6976.2012.00325.x
  56. Burmølle M, Ren D, Bjarnsholt T, Sorensen SJ. Interactions in multispecies biofilms: do they actually matter? Trends Microbiol. 2014;22(2):84–91. doi: 10.1016/j.tim.2013.12.004
  57. Nadell CD, Xavier JB, Foster KR. The sociobiology of biofilms. FEMS Microbiol Rev. 2009;33(1):206–224. doi: 10.1111/j.1574-6976.2008.00150.x
  58. Moons P, Michiels CW, Aertsen A. Bacterial interactions in biofilms. Crit Rev Microbiol. 2009;35(3):157–168. doi: 10.1080/10408410902809431
  59. Timchenko NF, Rakov AV, Terent’eva NA, Jakovlev AA. Characteristic of the mixed bacteria of the Enterobacteriaceae family Yersinia pseudotuberculosis and S. enteritidis in vitro. Zdorov’e. Meditsinskaya ehkologiya. Nauka. 2019;(1):19–22. (In Russ).
  60. Peters BM, Jabra-Rizk MA, O’May GA, et al. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev. 2012;25(1):193–213. doi: 10.1128/CMR.00013-11
  61. Giaouris E, Chorianopoulos N, Doulgeraki A, Nychas GJ. Co-culture with Listeria monocytogenes within a dual-species biofilm community strongly increases resistance of Pseudomonas putida to benzalkonium chloride. PLoS One. 2013;8(10):e77276. doi: 10.1371/journal.pone.0077276
  62. Lee KW, Periasamy S, Mukherjee M, et al. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J. 2014;8(4):894–907. doi: 10.1038/ismej.2013.194

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Eco-vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies