COMPARATIVE ANALYSIS OF EFFECTIVENESS OF ANTIVIRAL THERAPY IN CHRONIC HUMAN HERPESVIRUS 6 TYPE INFECTION


Cite item

Full Text

Abstract

Introduction. In recent years human-6 herpes virus (HHV-6) has become the most commonly detected virus in peripheral blood, saliva and cerebrospinal fluid, both in asymptomatic infections and in diseases potentially associated with HHV-6. Today, no antiviral drug has been officially approved for the treatment of HHV-6. Materials and methods. 57 patients with chronic HHV-6 infection were examined (mean age 33.34 ± 1.86 years). Patients were divided into three groups for different treatment regimens: 1 group (12 patients) received therapy with Famvir; Group 2 (16 patients) received Valcite; Group 3 (29 patients) - Ingaron. All patients were determined by the number of copies of HHV-6 DNA by PCR in saliva samples before and after the therapy. Results. None of the patient groups received negative PCR results after treatment. In groups of patients after valcyte therapy and therapy with Ingaron there is a significant decrease in the number of copies of HHV-6 DNA. The severity of complaints after therapy was also analyzed. Significant therapeutic effect a month after therapy showed Ingaron, to a slightly lesser extent - Valcite. The worst result was obtained in the group of patients receiving famvir.

About the authors

Irina Anisimovna Rakitianskaya

City Ambulant Department of Allergology-Immunology and Clinical Transfusiology

Email: tat-akyla@inbox.ru
doctor of medical sciences, professor of outpatient department of allergology-immunology and clinical transfusiology, St. Petersburg 195427, St. Petersburg, Russia

T. S Ryabova

City Ambulant Department of Allergology-Immunology and Clinical Transfusiology; Military Medical Academy named after S.M. Kirov

195427, St. Petersburg, Russia; 194044, St. Petersburg, Russia

A. A Kalashnikova

The FSBI «The Nikiforov Russian Center of Emergency and Radiation Medicine» The Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters

194044, St. Petersburg, Russia

References

  1. Salahuddin S.Z., Ablashi D.V., Markham P.D. et al. Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science. 1986; 234: 596-601. doi: 10.1126/science.2876520
  2. Frenkel N., Schirmer E.C., Wyatt L.S. et al. Katsafanas G, Roffman E, Danovich RM, June CH. Isolation of a new herpesvirus from human CD4+ T cells. Proc Natl Acad Sci USA. 1990; 87: 748-52. doi: 10.1073/pnas.87.2.748;
  3. Braun D.K., Dominguez G., Pellett P.E. Human herpesvirus 6. Clin Microbiol Rev. 1997; 10: 521-67.
  4. Adams M.J., Carstens E.B. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2012). Arch Virol. 2012; 157: 1411-22.
  5. Harberts E., Yao K., Wohler J.E., et al. Human herpesvirus-6 entry into the central nervous system through the olfactory pathway. Proc Natl Acad Sci USA. 2011; 108: 13734-9. doi: 10.1073/pnas.1105143108.
  6. Yamanishi K., Mori Y., Pellett P.E. Human herpesviruses 6 and 7. In Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B. (ed), Fields virology, 6th ed, vol 2 Lippincott Williams & Wilkins, Philadelphia, PA. 2013; 2058-2079.
  7. Arbuckle J.H., Medveczky M.M., Luka J., et al. The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc. Natl. Acad. Sci. USA. 2010; 107: 5563-8. doi: 10.1073/pnas.091358610736,37.
  8. Yoshikawa T., Asano Y., Akimoto S., et al. Latent infection of human herpesvirus 6 in astrocytoma cell line and alteration of cytokine synthesis. J. Med. Virol. 2002; 66: -505. doi: 10.1002/jmv.2172
  9. Ahlqvist J., Fotheringham J., Akhyani N., et al. Differential tropism of human herpesvirus 6 (HHV-6) variants and induction of latency by HHV-6A in oligodendrocytes. J. Neurovirol. 2005; 11:384-94. doi: 10.1080/13550280591002379
  10. Martin LK, Schub A, Dillinger S, et al. Specific CD8(+) T cells recognize human herpesvirus 6B. Eur J Immunol. 2012; 42: 2901-12.
  11. Tang H., Serada S., Kawabata A., et al. CD134 is a cellular receptor specific for human herpesvirus-6B entry. Proc Natl Acad Sci USA. 2013; 110:9096-9099. doi: 10.1073/pnas.1305187110
  12. De Filippis L., Foglieni C., Silva S., et al. Differentiated human neural stem cells: a new ex vivo model to study HHV-6 infection of the central nervous system. J Clin Virol. 2006; 37(Suppl 1): 27-32.
  13. Geraudie B., Charrier M., Bonnafous P., et al. Quantitation of human herpesvirus-6A,-6B and-7 DNAs in whole blood, mononuclear and polymorphonuclear cell fractions from healthy blood donors. J Clin Virol. 2012; 53: 151-5.
  14. Ferlazzo G., Pack M., Thomas D., et al. Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc. Natl. Acad. Sci. USA. 2004; 101:16606-11. doi: 10.1073/pnas.0407522101.
  15. Lee S.H., Biron C.A. Here today-Not gone tomorrow: Roles for activating receptors in sustaining NK cells during viral infections. Eur. J. Immunol. 2010; 40: 923-32. doi: 10.1002/eji.201040304.
  16. Arbuckle J.H., Pantry S.N., Medveczky M.M., et al. Mapping the telomere integrated genome of human herpesvirus 6A and 6B. Virology. 2013; 442: 3-11. doi: 10.1016/j.virol.2013.03.030.
  17. Hall C.B., Caserta M.T., Schnabel K., et al. Chromosomal integration of human herpesvirus 6 is the major mode of congenital human herpesvirus 6 infection. Pediatrics. 2008; 122: 513-20. doi: 10.1542/peds.2007-2838.
  18. Gulve N., Frank C., Klepsch M., et al. Chromosomal integration of HHV-6A during non-productive viral infection. Sci. Rep. 2017; 7: 512. doi: 10.1038/s41598-017-00658-y.
  19. Arbuckle Jesse H., Medveczky Maria M., Luka Janos, et al. The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc. Natl. Acad. Sci. USA. 2010. Mar 23; 107(12): 5563-8. doi: 10.1073/pnas.0913586107.
  20. Razonable R.R., Zerr D.M. HHV-6, HHV-7 and HHV-8 in solid organ transplant recipients. American Journal of Transplantation. 2009; 9(Suppl 4):S97-S100.
  21. Irving, W.L. & Cunningham, A.L. Serological diagnosis of infection with human herpesvirus type 6. BMJ. 1990; 300: 156-9.
  22. Steeper T.A., Horwitz C.A., Ablashi D.V., et al. The spectrum of clinical and laboratory findings resulting from human herpesvirus-6 (HHV-6) in patients with mononucleosis-like illnesses not resulting from Epstein-Barr virus or cytomegalovirus. Am. J. Clin. Pathol. 1990; 93: 776-83.
  23. Zerr D.M. Human herpesvirus 6: a clinical update. Herpes 2006; 13: 20-24.
  24. Coen D. M. Schaffer P. A. 2003. Antiherpesvirus drugs: a promising spectrum of new drugs and drug targets. Nat. Rev. Drug Discov. 2003; 2: 278-88.
  25. Gallois-Montbrun S., Schneider Y. Chen V., et al. Improving nucleoside diphosphate kinase for antiviral nucleotide analogs activation. J. Biol. Chem. 2002; 277: 39953-9.
  26. Manichanh C., Olivier-Aubron C., Lagarde J.-P., et al. Selection of the same mutation in the U69 protein kinase gene of human herpesvirus-6 after prolonged exposure to ganciclovir in vitro and in vivo. J Gen Virol. 2001; 82, 2767-76.
  27. Baldant F., D. Miche L. Simoncini M. et al. Mutations in the UL97 ORF of ganciclovir-resistant clinical cytomegalovirus isolates differentially affect GCV phosphorylation as determined in a recombinant vaccinia virus system. Antivir. Res. 2002; 54: 59-67.
  28. Isegawa Y., Hara J., Amo K., et al. Human herpesvirus 6 ganciclovir-resistant strain with amino acid substitutions associated with the death of an allogeneic stem cell transplant recipient. J Clin Virol. 2009; Jan; 44(1): 15-9. doi: 10.1016/j.jcv.2008.09.002.
  29. De Bolle L., Manichanh C., Agut H., et al. Human herpesvirus 6 DNA polymerase: enzymatic parameters, sensitivity to ganciclovir and determination of the role of the A961V mutation in HHV-6 ganciclovir resistance. Antiviral Res. 2004; Oct; 64(1): 17-25. doi: 10.1016/j.antiviral.2004.04.009
  30. Nijhuis M., van Maarseveen N.M., Boucher C.A. Antiviral resistance and impact on viral replication capacity: evolution of viruses under antiviral pressure occurs in three phases. Handb Exp Pharmacol. 2009; (189): 299-320. doi: 10.1007/978-3-540-79086-0_11.
  31. Kikuta H., Nakane A., Lu H., et al. Interferon induction by human herpesvirus 6 in human mononuclear cells. J Infect Dis. 1990; Jul; 162(1): 35-8
  32. Jaworska J., Gravel A, Flamand L. Divergent susceptibilities of human herpesvirus 6 variants to type I interferons. Proc Natl Acad Sci USA. 2010; May 4; 107(18): 8369-74. doi: 10.1073/pnas.0909951107.
  33. Rizzo R., Zatelli M.C., Rotola A., et al. Increase in peripheral CD3-CD56brightCD16- natural killer cells in hashimoto’s thyroiditis associated with HHV-6 infection. Adv. Exp. Med. Biol. 2016; 897: 113-20. doi: 10.1007/5584_2015_5010
  34. Caselli E., Zatelli M.C., Rizzo R., et al. Virologic and immunologic evidence supporting an association between HHV-6 and Hashimoto’s thyroiditis. PLoS Pathog. 2012; 8:e1002951. doi: 10.1371/journal.ppat.1002951
  35. Catusse J., Spinks J., Mattick C., et al. Immunomodulation by herpesvirus U51A chemokine receptor via CCL5 and FOG-2 down-regulation plus XCR1 and CCR7 mimicry in human leukocytes. Eur. J. Immunol. 2008; 38: 763-77. doi: 10.1002/eji.200737618.

Copyright (c) 2019 Eco-vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies