Mechanisms of Cholera Agent Persistence under Varying Osmolarity Conditions


Cite item

Full Text

Abstract

During the lifecycle cholera agent, being human pathogen and natural reservoir inhabitant, is constantly exposed to varying osmolarity environments, induced by different sodium chloride content. However, Vibrio cholerae has created the mechanisms providingfor adaptation to changes of living surroundings. The review covers the data on the impact of NaCl on the survivability of toxigenic V. cholerae strains, and information on mechanisms of adaptation to varying osmolarity. It is demonstrated that at low NaCl contents expression of genes, necessary for cell wall formation and cell growth is elevated; under high NaCl concentration conditions for transcription of genes, encoding transport systems, removing sodium ions, and also responsible for biosynthesis of osmoprotectors, are increased. There is discussed the role of two transcription regulators, CosR and OscR, cooperatively altering gene expression in accordance with particular environmental osmolarity. Further studies into the mechanisms of V. cholerae adaptation to changes of sodium chloride concentration will extend the knowledge about biology and ecology of the pathogen.

About the authors

Svetlana P. Zadnova

Russian Research Anti-Plague Institute «Microbe» of the Federal Service for Consumer Rights Protection and Human Welfare

Email: rusrapi@microbe.ru
MD, PhD, DSci., leading researcher of the Russian Research Anti-Plague Institute «Microbe» of the Federal Service for Consumer Rights Protection and Human Welfare 46, Universitetskaya str., Saratov, 410005, Russian Federation

N. A Plekhanov

Russian Research Anti-Plague Institute «Microbe» of the Federal Service for Consumer Rights Protection and Human Welfare

мл. науч. сотр. лаб. патогенных вибрионов ФКУЗ РосНИПЧИ «Микроб» 46, Universitetskaya str., Saratov, 410005, Russian Federation

N. I Smirnova

Russian Research Anti-Plague Institute «Microbe» of the Federal Service for Consumer Rights Protection and Human Welfare

Email: rusrapi@microbe.ru
доктор биол. наук, проф., зав. лаб. патогенных вибрионов ФКУЗ РосНИПЧИ «Микроб» 46, Universitetskaya str., Saratov, 410005, Russian Federation

References

  1. Москвитина Э.А., Мазрухо А.Б., Адаменко О.Л., Арешина О.А., Назаретян А.А., Кругликов В.Д. и др. Характеристика эпидемиологической обстановки по холере в мире (2003-2012 гг.) и прогноз на 2013 г. Проблемы особо опасных инфекций. 2013; (1): 11-7.
  2. Титова С.В., Москвитина Э.А., Кругликов В.Д., Самородова А.В., Тюленева Е.Г., Монахова Е.В. и др. Оценка эпидемиологической обстановки в мире и России в 2006-2015 гг. Прогноз на 2016 г. Проблемы особо опасных инфекций. 2016; (1): 20-7.
  3. Huq A., West P.A., Small E.B., Huq M.I., Colwell R.R. Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar O1 associated with live copepods in laboratory microcosms. Appl. Environ. Microbiol. 1984; 48: 420-4.
  4. Colwell R.R. Global climate and infectious disease: the cholera paradigm. Science. 1996; 274: 2025-31.
  5. Brown I.I., Sirenko L.A. The role of the sodium cycle of energy coupling in the emergence and persistence of natural foci of modern cholera. Biochemistry. 1997; 62: 225-30.
  6. Lutz C., Erken M., Noorian P., Sun S., McDougald D. Environmental reservoirs and mechanism of persistence of Vibrio cholerae. Front. Microbiol. 2013; 4(00375): 1-15. doi: 10.3389/fmicb.2013.00375
  7. Islam M.S., Islam M.S., Mahmud Z.H., Caimcross S., Clemens J.D., Collins A.E. Role phytoplankton in maintaining endemicity and seasonality of cholera in Bangladesh. Trans. Roy. Soc. Trop. Med. Hyg. 2015; 109(9): 572-8. doi: 10.1093/trstmh/trv057
  8. Singleton F.L., Attwell R.W., Jangi M.S., Colwell R.R. Influence of salinity and organic nutrient concentration on survival and growth of Vibrio cholerae in aquatic microcosms. Appl. Environ. Microbiol. 1982; 43: 1080-5.
  9. Shikuma N.J., Yildiz F.H. Identification and characterization of OscR, a transcriptional regulator involved in osmolarity adaptation in Vibrio cholerae. J. Bacteriol. 2009; 191: 4082-96. doi: 10.1128/JB.01540-08
  10. Colwell R.R., Huq A. Environmental reservoir of Vibrio cholerae. The causative agent of cholera. Ann. N.Y. Acad. Sci. 1994; 740: 44-54. doi: 10.1111/j.1749-6632.1994.tb19852.x
  11. McCarthy S.A. Effects of temperature and salinity on survival of toxigenic Vibrio cholerae O1 in seawater. Microbiol. Ecol. 1996; 31(2): 167-75. doi: 10.1007/BF 00167862
  12. Pascual M., Bouma M.J., Dobson A.P. Cholera and climate: revisiting the quantitative evidence. Microb. Infect. 2002; 4: 237-45. doi: 10.1016/S1286-4579(01)01533-7
  13. Collins A.E. Vulnerability to coastal ecology. Soc. Sci. Med. 2003; 57: 1397-407. doi: 10.1016/S0277-9636(02)00519-1
  14. Colwell R.R. Infectious disease and environment: cholera as a paradigm for waterborne disease. Intern. Microbiol. 2004; 7: 285-9.
  15. Huq A., Sack R.B., Nizam A., Longini I.M., Nair G.B., Ali A. et al. Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh. Appl. Environ. Microbiol. 2005; 71: 4645-54. doi: 10.1128/AEM.71.8.4645-4654.2005
  16. Lobitz B., Beck L., Hug A., Wood B., Fuchs G., Faruque A.S.G. et al. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc. Natl. Acad. Sci. USA. 2000; 97: 1438-43.
  17. Москвитина Э.А., Мазрухо А.Б., Адаменко О.Л., Арешина О.А., Кругликов В.Д., Безсмертный В.Е. и др. Аналитические данные о выделении холерных вибрионов О1 и О139 серогрупп из поверхностных водоемов и других объектов окружающей среды на административных территориях России, различных по типам эпидемических проявлений холеры. В кн.: «Холера и патогенные для человека вибрионы»: Материалы Совещания специалистов Роспотребнадзора 5-6 июня 2013 г. Ростов-н/Д: Дониздат; 2013; 26: 26-34.
  18. Gupta S., Chowdhury R. Bile affects production of virulence factors and motility of Vibrio cholerae. Infect. and Immun. 1997; 65: 1131-4.
  19. Mahalanabis D., Watten R., Wallace C. Clinical aspects and management of pediatric cholera. In: Barua D. and Burrows W. (Eds.). Cholera. Philadelphia: W.B. Saunders Company; 1974: 221-33.
  20. Häse C.C., Mekalanos J.J. Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA. 1999; 96: 3183-7.
  21. Häse C.C., Barquera B. Role of sodium bioenergetics in Vibrio cholerae. Biochim. Biophys. Acta. 2001; 1505: 169-78. doi: 10.1016/S0005-2728(00)00286-3
  22. Miller C.J., Drasar B.S., Feachem R.G. Response of toxigenic Vibrio cholerae O1 to physico-chemical stresses in aquatic environments. J. Hyg. (Lond.). 1984; 93: 475-95.
  23. Odić D., Turk V., Stopar D. Environmental stress determines quality of bacterial lysate and its utilization efficiency in a simple microbial loop. Microbiol. Ecol. 2007; 53: 639-64. doi: 10.1007/s00248-006-9143-8
  24. Vimont S., Berche P. NhaA, an Na+/H+ antiporter involved in environmental survival of Vibrio cholerae. J. Bacteriol. 2000; 182: 2937-44.
  25. Pflughoeft K.J., Kierek K., Watnick P.I. Role of ectoine in Vibrio cholerae osmoadaptation. Appl. Environ. Microbiol. 2003; 69: 5919-27. doi: 10.1128/AEM.69.10.5919-5927.2003
  26. Wood J.M., Bremer E., Csonka L.N., Kraemer R., Poolman B., van der Heide T. et al. Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp. Biochem. Physiol. Pt A: Mol. Integr. Physiol. 2001; 130: 437-60. DOI: 10/1016/S1095-6433-(01)00442-1
  27. Hengge-Aronis R. Recent insights into the general stress response regulatory network in Escherichia coli. J. Mol. Microbiol. Biotechnol. 2002; 4: 341-6.
  28. Wood J.M. Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu. Rev. Microbiol. 2011; 65: 215-38. doi: 10.1146/annurev-micro-090110-102815
  29. Wargo M.J. Choline catabolism to glycine betaine contributes to Pseudomonas aeruginosa survival during murine lung infection. PLoS One. 2013; 8: e56850. doi: 10.1371/journal.pone.0056850
  30. Современная микробиология. Прокариоты / Под ред. Й. Ленгелера, Г. Древса, Г. Шлегеля. М.: Мир; 2005; т. 1-2.
  31. Sleator R.D., Hill C. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 2002; 26: 49-71. DOI: http://dx.doi.org/10.1111/j.1574-6976.2002.tb00598.x
  32. He Z., Zhou A., Baidoo E., He Q., Joachimiak M.P., Benke P. et al. Global transcriptional, physiological, and metabolite analyses of the responses of Desulfovibrio vulgaris Hildenborough to salt adaptaadaptation. Appl. Environ. Microbiol. 2010; 76: 1574-86. doi: 10.1128/AEM.02141-09
  33. Селиванова Е.А. Механизмы выживания микроорганизмов в гиперосмотических условиях. Бюллетень Оренбургского научного центра УрО РАН. 2012; 3: 1-10. (электронный журнал, http://www.elmag.uran.ru, дата обращения 5.04.2016).
  34. Altendorf K., Booth I.R., Gralla J.D., Greie J.C., Rosenthal A.Z., Wood J.M. Osmotic stress. EcoSal Plus. 2013; 1-41. doi: 10.1128/ecosalplus.5.4.5
  35. Igarashi K., Kashiwagi K. Polyamines: mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 2000; 271: 559-64. doi: 10.1006/bbrc.2000.2601
  36. Lequette Y., Rollet E., Delangle A., Greenberg E.P., Bohin J.P. Linear osmoregulated periplasmic glucans are encoded by the opgGH locus of Pseudomonas aeruginosa. Microbiology. 2007; 153: 3255-63. doi: 10.1099/mic.0.2007/008953-0
  37. Cayley D.S., Guttman H.J., Record M.T. Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. Biophys. J. 2000; 78: 1748-64.
  38. Faruque S.M., Biswas K., Udden S.M., Ahmad Q.S., Sack D.A., Nair G.B. et al. Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc. Natl. Acad. Sci. USA. 2006; 103: 6350-5. doi: 10.1073/pnas.0601277103
  39. Teschler J.K., Zamorano-S@ánchez D., Utada A.S., Warner C.J.A., Wong G.C.L., Linington R.G. et al. Living in the matrix: assembly and control of Vibrio cholerae biofilms. Microbiol. 2015; 13: 255-68. doi: 10.1038/nmicro3433
  40. Jubelin G., Vianney A., Beloin C., Ghigo J.M., Lazzaroni J.C., Lejeune P. et al. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J. Bacteriol. 2005; 187: 2038-49. doi: 10.1128/JB.187.6.2038-2049.2005
  41. Coyne V.E., al-Harthi L. Induction of melanin biosynthesis in Vibrio cholerae. Appl. Environ. Microbiol. 1992; 58: 2861-5.
  42. Chakrabarti A.K., Chaudhuri K., Sen K., Das J. Porins of Vibrio cholerae: purification and characterization of OmpU.J. Bacteriol. 1996; 17: 524-30.
  43. Cai S.J., Inouye M. EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J. Biol. Chem. 2002; 277: 24155-61. doi: 10.1074/jbc.M110715200
  44. Hernandez-Alles S., Alberti S., Alvarez D., Domenech-Sanchez A., Martinez-Martinez L., Gil J. et al. Porin expression in clinical isolates of Klebsiella pneumoniae. Microbiology. 1999; 145: 673-9. doi: 10.1099/13500872-145-3-673
  45. Xu C., Ren H., Wang S., Peng X. Proteomic analysis of salt-sensitive outer membrane proteins of Vibrio parahaemolyticus. Res. Microbiol. 2004; 155: 835-42. doi: 10.1016/j.resmic.2004.07.001
  46. Xu C., Wang S., Ren H., Lin X., Wu L., Peng X. Proteomic analysis on the expression of outer membrane proteins of Vibrio alginolyticus at different sodium concentrations. Proteomics. 2005; 5: 3142-52. doi: 10.1002/pmic.200401128
  47. Fu X., Liang W., Du P., Yan M., Kan B. Transcript changes in Vibrio cholerae in response to salt stress. Gut Pathogens. 2014; 6: 1-6. doi: 10.1186/s13099-014-0047-8
  48. Hosseinkhan N., Zarrineh P., Rokni-Zadeh H., Ashouri M.R., Masoudi-Nejad A. Co-expressional conservation in virulence and stress related genes of three Gamma Proteobacterial species: Escherichia coli, Salmonella enterica and Pseudomonas aeruginosa. Mol. BioSyst. 2015; 11(11): 3137-48. doi: 10.1039/C5MB00353A
  49. Cebrian G., Arroyo C., Condon S., Manas P. Osmotolerance provided by the alternative sigma factors sB and rpoS to Staphylococcus aureus and Escherichia coli is solute dependent and does not result in an increased growth fitness in NaCl containing media. Int. J. Food Microbiol. 2015; 214: 83-90. doi: 10.1016/j.ijfoodmicro.2015.07.011
  50. Schlosser A., Meldorf M., Stumpe S., Bakker E.P., Epstein W. TrkH and its homolog. TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli. J. Bacteriol. 1995; 177: 1908-10.
  51. Sleator R.D., Hill C. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 2002; 26: 49-71. DOI: http://dx.doi.org/10.1111/j.1574-6976.2002.tb00598.x
  52. Sato Y., Nanatani K., Hamamoto S., Shimizu M., Takahashi M., Tabuchi-Kobayashi M. et al. Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K+ transport of a Kup/HAK/KT-type Escherichia coli potassium transporter. J. Biochem. 2014; 155: 315-23. doi: 10.1093/jb/mvu007
  53. Harms C., Domoto Y., Celik C., Rahe E., Stumpe S., Schmid R. et al. Identification of the ABC protein SapD as the subunit that confers ATP dependence to the K+-uptake systems TrkH and TrkG from Escherichia coli K-12. Microbiology. 2001; 147: 2991-3003. doi: 10.1099/00221287-147-11-2991
  54. Greie J.C., Altendorf K. The K+-translocating KdpFABC complex from Escherichia coli: A P-type ATPase with unique features. J. Bioenerg. Biomembr. 2007; 39: 397-402. doi: 10.1007/s10863-007-9111-0
  55. Trchounian A., Kobayashi H. Kup is the major K+ uptake system in Escherichia coli upon hyper-osmotic stress at low pH. FEBS Lett. 1999; 447: 144-8. doi: 10.1016/S0014-5793(99)00288-4
  56. Widderich N., Kobus S., Höppner A., Riclea R., Seubert A., Dickschat J.S. et al. Biochemistry and crystal structure of ectoine synthase: a metal-containing member of the cupin superfamily. PLoS One. 2016; 11(3): e0151285. doi: 10.1371/journal.pone.0151285
  57. Kapfhammer D., Karatan E., Pflughoeft K.J., Watnick P.I. Role for glycine betaine transport in Vibrio cholerae osmoadaptation and biofilm formation within microbial communities. Appl. Environ. Microbiol. 2005; 74: 3840-7. doi: 10.1128/AEM.71.7.3840-3847.2005
  58. Shikuma N.J., Davis K.R., Fong J.N.C., Yildiz F.H. The transcriptional regulator, CosR, controls compatible solute biosynthesis and transport, motility and biofilm formation in Vibrio cholerae. Environ. Microbiol. 2013; 15: 1387-99. doi: 10.1111/j.1462-2920.2012.02805.x
  59. Dunlap P.V. OscR, a new osmolarity-responsive regulator in Vibrio cholerae. J. Bacteriol. 2009; 191: 4053-5. doi: 10.1128/JB.00501-09

Copyright (c) 2016 Eco-vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies