TO THE QUESTION OF THE EVOLUTION OF BACILLUS ANTHRACIS MICROBE


Cite item

Full Text

Abstract

The objective of the review - the analysis of results of researches on the characteristics of strains of bacilli from the B.cereus sensu lato group, causing anthrax-like diseases of the people and some animal species. The facts testify that along with the evolution of Bacillus anthracis microbe which has led to acquisition of major factors of virulence - plasmids рХО1 and рХО2, emergence of strains of bacilli with plasmids of virulence similar to B. anthracis, but retaining B.cereus sensu strico properties is possible. The reasons and conditions of emergence of such strains aren't established yet.

About the authors

A. V Lipnitskiy

Volgograd Research Anti-Plague Institute

Email: lipnitskii@list.ru
доктор мед. наук, проф., гл. науч. сотр. лаб. сибирской язвы 7, Golubinsky Str., Volgograd, Russian Federation, 400131

I. A Barkova

Volgograd Research Anti-Plague Institute

7, Golubinsky Str., Volgograd, Russian Federation, 400131

V. A Antonov

Volgograd Research Anti-Plague Institute

7, Golubinsky Str., Volgograd, Russian Federation, 400131

A. M Barkov

Volgograd Research Anti-Plague Institute

7, Golubinsky Str., Volgograd, Russian Federation, 400131

A. V Novozhenina

Volgograd Research Anti-Plague Institute

7, Golubinsky Str., Volgograd, Russian Federation, 400131

References

  1. Сибирская язва: актуальные проблемы разработки и внедрения медицинских средств защиты: Руководство для врачей / Онищенко Г.Г., Кожухов В.В., Васильев Н.Т., Бондарев В.П., Борисевич И.В., Дармов И.В. и др.; под ред Г.Г. Онищенко и др. М.: Медицина; 2010.
  2. Inglesby T., O’Toole T., Henderson D., Bartlett J., Ascher M., Eitzen E. et al. Anthrax as a biological weapon, 2002: updated recommendations for management. J.A.M.A. 2002; 287(17): 2236-52.
  3. Yu G.X. Pathogenic Bacillus anthracis in the progressive gene losses and gains in adaptive evolution. BMC Bioinform. 2009; 10 (Suppl. 1): S3.
  4. Turnbull P. Introduction: anthrax history, disease and ecology. Curr. Top. Microbiol. Immunol. 2002; 271: 1-19.
  5. Ehling-Schulz M., Fricker M., Scherer S. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 2004; 48: 479-87.
  6. Ehling-Schulz M., Svensson B., Guinebretiere M.-H., Lindback T., Andersson M., Schulz A. et al. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology. 2005; 151: 183-97.
  7. Ehling-Schulz1 M., Fricker M., Grallert H., Rieck P., Wagner M., Scherer S. Cereulide synthetase gene cluster from emetic Bacillus cereus: Structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol. 2006; 6: 20.
  8. Stenfors Arnesen L., Fagerlund A., Granum P. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 2008; 32: 579-606.
  9. Berry C., O’Neil S., Ben-Dov E., Jones A., Murphy L., Quail M. et al. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 2002; 68(10): 5082-95.
  10. Roh J., Choi J., Li M., Jin B. Je Y. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 2007; 17(4): 547-59.
  11. Nakamura L., Jackson M. Clarification of the taxonomy of Bacillus mycoides. Int. J. Syst. Bacteriol. 1995; 45: 46-9.
  12. Lechner S., Mayr R., Francis K., Prüss B., Kaplan T., Wiessner-Gunkel E. et al. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int. J. Syst. Bacteriol. 1998; 4: 1373-82.
  13. Daffonchio D., Cherif A., Brusetti L., Rizzi A., Mora D., Boudabous A., Borin S. Nature of polymorphisms in 16S-23S rRNA gene intergenic transcribed spacers fingerprinting of Bacillus and related genera. Appl. Environ. Microbiol. 2003; 69: 5128-37.
  14. Priest F., BarkerM., Baillie L., Holmes E., Maiden M. Population structure and evolution of the Bacillus cereus group. J. Bacteriol. 2004; 186: 7959-70.
  15. Rasko D., Worsham P., Abshire T., Stanley S., Bannan J., Wilson M. et al. Microbial forensic applications of comparative genome analysis: Identification of Bacillus anthracis genetic markers in the Amerithrax investigation. Proc. Natl Acad. Sci. USA. 2011; 108(12): 5027-32.
  16. Helgason E., 0kstad O., Caugant D., Johansen H., Fouet A., Mock M. et al. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis - one species on the basis of genetic evidence. Appl. Environ. Microbiol. 2000; 66: 2627-30.
  17. Ko K., Kim J.W., Kim J.M., Kim, W., Chung, S., Kim, I.J., Kook, Y.H. Population structure of the Bacillus cereus group as determined by sequence analysis of six housekeeping genes and the plcR Gene. Infect. and Immun. 2004; 72: 5253-61.
  18. Sorokin A., Candelon B., Guilloux K., Galleron N., Wackerow-Kouzova N., Ehrlich S.D. et al. Multiple-locus sequence typing analysis of Bacillus cereus and Bacillus thuringiensis reveals separate clustering and a distinct population structure of psychrotrophic strains. Appl. Environ. Microbiol. 2006; 72(2): 1569-78.
  19. Didelot X., Barker M., Falush D., Priest F. Evolution of pathogenicity in the Bacillus cereus group. Syst. Appl. Microbiol. 2009; 32(2): 81-90.
  20. Pilo P., Frey J. Bacillus anthracis: Molecular taxonomy, population genetics, phylogeny and patho-evolution (Review) Infect., Genet. Evol. 2011; 11: 1218-24.
  21. Keim P., Gruendike J., Klevytska A., Schupp J., Challacombe J., Okinaka R. The genome and variation of Bacillus anthracis. Mol. Aspects Med, 2009, 30: 397-405.
  22. Zwick M., Joseph S., Didelot X., Chen P., Bishop-Lilly K., Stewart A. et al. Genomic characterization of the Bacillus cereus sensu lato species: backdrop to the evolution of Bacillus anthracis. Genome Res. 2012; 22(8): 1512-24.
  23. Hernandez E., Ramisse F., Ducoureau J., Cruel T., Cavallo J. Bacillus thuringiensis subsp. konkukian (serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. J. Clin. Microbiol. 1998; 36(7): 2138-9.
  24. Challacombe J.F., Altherr M.R., Xie G., Bhotika S.S., Brown N., Bruce D. et al. The complete genome sequence of Bacillus thuringiensis Al Hakam. J. Bacteriol. 2007; 189: 3680-1.
  25. Hoffmaster A., Ravel J., Rasko D., Chapman G., Chute M., Marston C. et al. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl Acad. Sci. USA. 2004; 101(22): 8449-54.
  26. Hoffmaster A., Hill K., Gee J., Marston C., De B., Popovic T. et al. Characterization of Bacillus cereus isolates associated with fatal pneumonias: strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. J. Clin. Microbiol. 2006; 44(9): 3352-60.
  27. Hoffmaster A., Novak R., Marston C., Gee J., Helsel L., Pruckler J., Wilkins P. Genetic diversity of clinical isolates of Bacillus cereus using multilocus sequence typing. BMC Microbiol. 2008; 8: 191.
  28. Oh S.Y., Budzik J. M., Garufi G., Schneewind O. Two capsular polysaccharides enable Bacillus cereus G9241 to cause anthraxlike disease. Mol. Microbiol. 2011; 80: 455-70.
  29. Wilson M., Vergis J., Alem F., Palmer J., Keane-Myers A., Brahmbhatt T. et al. Bacillus cereus G9241 makes anthrax toxin and capsule like highly virulent B. anthracis Ames but behaves like attenuated toxigenic nonencapsulated B. anthracis Sterne in rabbits and mice. Infect. and Immun. 2011; 79(8): 3012-9.
  30. Leendertz F., Ellerbrok H., Boesch C., Couacy-Hymann E., Mätz-Rensing K., Hakenbeck V. et al. Anthrax kills wild chimpanzees in a tropical rainforest. Nature. 2004; 430: 451-2.
  31. Leendertz F., Lankester F., Guislain P., Néel C., Drori O., Dupain J. et al. Anthrax in western and Central African great apes. Am. J. Primatol. 2006; 68 (9): 928-33.
  32. Leendertz F., Yumlu S., Pauli G., Boesch C., Couacy-Hymann E., Vigilant L. et al. A new Bacillus anthracis found in wild chimpanzees and a gorilla from West and Central Africa. PLoS Pathog. 2006; 2(1): e8.
  33. Klee S., Brzuszkiewicz E., Nattermann H., Bruggemann H., Dupke S., Wollherr A. et al. The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PLoS One. 2010; 5: e10986.
  34. Klee S., Ozel M., Appel B., Boesch C., Ellerbrok H. et al. Characterization of Bacillus anthracis-like bacteria isolated from wild great apes from Cote d’Ivoire and Cameroon. J. Bacteriol. 2006; 188: 5333-44.
  35. Pilo P., Rossano A., Bamamga H., Abdoulkadiri S., Perreten V., Frey J. Bovine Bacillus anthracis in Cameroon. Appl. Environ. Microbiol. 2011; 77(16): 5818-21.
  36. Luna V., King D., Peak K., Reeves F., Heberlein-Larson L., Veguilla W. Bacillus anthracis virulent plasmid pX02 genes found in large plasmids of two other Bacillus species. J. Clin. Microbiol. 2006; 44(7): 2367-77.
  37. Zwick M. Thomason M., Chen P., Johnson H., Sozhamannan S., Mateczun A., Read Т. Genetic variation and linkage disequilibrium in Bacillus anthracis. Scien. Rep. 2011; 1: 169.
  38. Saile E., Koehler T. Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants. Appl. Environ. Microbiol. 2006; 72: 3168-74.
  39. Keim P., Price L., Klevytska A., Smith K., Schupp J., Okinaka R. et al. Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J. Bacteriol. 2000; 182: 2928-36.
  40. Van Ert M., Easterday W., Huynh L., Okinaka R., Hugh-Jones M., Ravel J. et al. Global genetic population structure of Bacillus anthracis. PLoS One. 2007; 2: e461.
  41. Van Ert M., Easterday W., Simonson T., U’Ren J., Pearson T., Kenefic L. et al. Strain-specific single-nucleotide polymorphism assays for the Bacillus anthracis Ames strain. J. Clin. Microbiol. 2007; 45: 47-53.
  42. Hu X., Van der A., Timmery S., Zhu L., Mahillon J. Distribution, diversity, and potential mobility of extrachromosomal elements related to the Bacillus anthracis pXO1 and pXO2 virulence plasmids. Appl. Environ. Microbiol. 2009; 75: 3016-28.
  43. Van der Auwera G., Andrup L., Mahillon J. Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727. BMC Genom. 2005; 6: 103.
  44. Keim P., Wagner D. Humans and evolutionary and ecological forces shaped the phylogeography of recently emerged diseases. Nature. Rev. Microbiol. 2009; 7: 813-21.
  45. Ivanova N., Sorokin A., Anderson I., Galleron N., Candelon B., Kapatral V. et al. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature. 2003; 423: 87-91.
  46. Jensen G., Hansen B., Ellenberg J., Mahillon J. The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 2003; 5: 631-40.
  47. Kolst0 A., Tourasse N., 0kstad O. What sets Bacillus anthracis apart from other Bacillus species? Annu. Rev. Microbiol. 2009; 63: 451-76.
  48. Han C., Xie G., Challacombe J., Altherr M., Bhotika S., Brown N. et al. Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J. Bacteriol. 2006; 188: 3382-90.

Copyright (c) 2013 Eco-vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies