Necrotizing pneumonia caused Staphylococcus aureus


Cite item

Full Text

Abstract

Necrotizing pneumonia caused by S. aureus is infrequent, but very serious illness with a high mortality. Pneumonia arises mainly in children and young adults, develops within several days is accompanied with multiple necroses in lung tissue, often leads to a lethal outcome. The feature ofpathogen is ability to formation ofpore-forming toxin destroying different cells in the body including polymorphonuclear leukocytes. The previous virus infection, for example flu, is considered a contributing factor or the co-infection which creates prerequisites for destruction ofneutrophils in lungs with appearance ofnecroses. S. aureus is not the most frequent causative agent of community-acquired pneumonia therefore empirical therapy does not include antibiotics with the activity against staphylococci which are sensitive or resistant to oxacyllin/meticyllin. As a result empirical regimen of antibacterial therapy appears not to be effective. Early clinical signs are a high fever, blood in the sputum, the presence of cavities in the lungs, a rapid increase in respiratory failure. The microscopy of sputum with detection o a large number of staphylococci allows to establish pathogen at an early stage, before obtaining results oif microbiological tests to prove application ofantibiotics active against staphylococci, and after receiving microbiological data to carry out the final correction ovf antibacterial therapy. Respiratory virus infection preceding peumonia or adverse epidemiological situation (flu epidemic) also is the justification for empiric application of anti-staphylococcal antibiotics in community acquired pneumonia.

About the authors

V. B. Beloborodov

Federal State Budgetary Institution Russian medical academy of postgraduate education

Email: vb_be-loborodov@mail.ru
д-р мед. наук, проф. каф. инфекционных болезней

References

  1. Low D.E. Toxic shock syndrome: major advances in pathogenesis, but not treatment. Crit. Care Clin. 2013; 29 (3): 651-75.
  2. Loffler B., Niemann S., Ehrhardt C. et al. Pathogenesis of Staphylococcus aureus necrotizing pneumonia. The role of PVL and an influenza coinfection. Expert Rev. AntiInfect. Ther. 2013; 11 (10): 1041-51.
  3. Schweigert M., Dubecz A., Beron M. et al. Surgical therapy for necrotizing pneumonia and lung gangrene. Thorac. Cardiovasc. Surg. 2013; 61 (7): 636-41.
  4. Kaneko J., Kamio Y. Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Biosci. Biotechnol. Biochem. 2004; 68 (5): 981-1003.
  5. Gillet Y., Issartel B., Vanhems P. et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotizing pneumonia in young immunocompetent patients. Lancet. 2002; 359 (9308): 753-9.
  6. Gillet Y., Vanhems P., Lina G. et al. Factors predicting mortality in necrotizing community-acquired pneumonia caused by Staphylococcus aureus containing Panton-Valentine leukocidin. Clin. Infect. Dis. 2007; 45 (3): 315-21.
  7. Howard L.S., Sillis М., Pasteur M.C., Kamath A.V., Harrison B.D. Microbiological profile of community-acquired pneumonia in adults over the last 20 years. J. Infect. 2005; 50 (2): 107-13.
  8. Limbago B., Fosheim G.E., Schoonover V. et al. Characterization of methicillin-resistant Staphylococcus aureus isolates collected in 2005 and 2006 from patients with invasive disease: a population-based analysis. J. Clin. Microbiol. 2009, 47 (5): 1344-51.
  9. Mendes R.E., Sader H.S., Deshpande L.M., Diep B.A., Chambers H.F., Jones R.N. Characterization of baseline methi- cillin-resistant Staphylococcus aureus isolates recovered from phase IV clinical trial for linezolid. J. Clin. Microbiol. 2010; 48: 568-74.
  10. Gorwitz R.J., Jernigan D.B., Powers J.H., Jernigan J.A. Participants in the CDC- Convened Experts’ Meeting on Management of MRSA in the Community. Strategies for clinical management ofMRSA in the community: summary of an experts’ meeting convened by the CDC and Prevention (2012). www.cdc. gov/mrsa/pdf/MRSA-Strategies-ExpMtgSummary-2006.pdf
  11. Chua K., Laurent F., Coombs G. et al. Antimicrobial resistance: Not community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA)! A clinician’s guide to community MRSA -its evolving antimicrobial resistance and implications for therapy. Clin. Infect. Dis. 2011; 52: 99-114.
  12. Rolo J., Miragaia M., Turlej-Rogacka A. et al. High genetic diversity among community-associated Staphylococcus aureus in Europe: results from a multicenter study. PLoS One. 2012; 7 (4): e34768.
  13. Chini V., Petinaki E., Meugnier H., Foka A., Bes M., Etienne J. et al. Emergence of a new clone carrying Panton-Valentine leukocidin genes and staphylococcal cassette chromosome mec type V among MRSA in Greece. Scand. J Infect. Dis. 2008; 40: 368-72.
  14. Otter J.A., French G.L. Molecular epidemiology of community-associated methicillin-resistant Staphylococcus aureus in Europe. Lancet. Infect. Dis 2010; 10: 227-39.
  15. Sicot N., Khanafer N., Meyssonnier V. et al. Methicillin resistance is not a predictor of severity in community-acquired Staphylococcus aureus necrotizing pneumonia - results of a prospective observational study. Clin. Microbiol. Infect. 2013; 19 (3): E142-8.
  16. Bubeck W.J., Bae T., Otto M. et al. Poring over pores: alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nature Med. 2007; 13 (12): 1405-6.
  17. Otto M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu. Rev. Microbiol. 2010, 64: 143-62.
  18. Voyich J.M., Otto M., Mathema B. et al. Is Panton-Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease? J. Infect. Dis. 2006; 194 (12): 1761-70.
  19. Chickering H.T., Park J.H. Staphylococcus aureus pneumonia. J. A. M. A. 1919; 72 (9): 617-26.
  20. Rouzic N., Janvier F., Libert N. et al. Prompt and successful toxin-targeting treatment of three patients with necrotizing pneumonia due to Staphylococcus aureus strains carrying the Panton-Valentine leukocidin genes. J. Clin. Microbiol. 2010; 48 (5): 1952-5.
  21. Hidron A.I., Low C.E., Honig E.G., Blumberg H.M. Emergence of community-acquired meticillin-resistant Staphylococcus aureus strain USA300 as a cause of necrotising community-onset pneumonia. Lancet Infect. Dis. 2009; 9 (6): 384-92.
  22. Diep B.A., Afasizheva A., Le H.N. et al. Effects of linezolid on suppressing in vivo production of staphylococcal toxins and survival outcomes in a rabbit model of MRSA necrotizing pneumonia. J. Infect. Dis. 2013; 208 (1): 75-82.
  23. Gillet Y., Dumitrescu O., Tristan A. et al. Pragmatic management of Panton-Valentine leukocidin-associated staphylococcal diseases. Int. J. Antimicrob. Agents. 2011; 38 (6): 457-64.
  24. Hampson F.G., Hancock S.W., Primhak R.A. Disseminated sepsis due to a Panton-Valentine leukocidin producing strain of community acquired meticillin-resistant Staphylococcus aureus and use of intravenous immunoglobulin therapy. Arch. Dis. Child. 2006; 91 (2): 201.
  25. Gauduchon V., Cozon G., Vandenesch F. et al. Neutralization of Staphylococcus aureus Panton-Valentine leukocidin by intravenous immunoglobulin in vitro. J. Infect. Dis. 2004; 189 (2): 346-53.
  26. Rothberg M.B., Haessler S.D., Brown R.B. Complications of viral influenza. Am. J. Med. 2008; 121 (4): 258-64.
  27. Morens D.M., Taubenberger J.K., Fauci A.S. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J. Infect. Dis. 2008; 198 (7): 962-70.
  28. Robertson L., Caley J.P., Moore J. Importance of Staphylococcus aureus in pneumonia in the 1957 epidemic of influenza A. Lancet. 1958; 2: 233-6.
  29. Wright J. Staphylococcal leucocidin (Neisser-Wechsberg type) and antileucociddin. Lancet. 1936 (2): 1002-4.
  30. Panton P.N., Valentine F.C.O. Staphylococcal toxin. Lancet. 1932; 5: 506-8.
  31. Konig B., Prevost G., Konig W. Composition of staphylococcal bi-component toxins determines pathophysiological reactions. J. Med. Microbiol. 1997; 46 (6): 479-85.
  32. Diep B.A., Chan L., Tattevin P. et al. Polymorphonuclear leukocytes mediate Staphylococcus aureus Panton-Valentine leukocidin-induced lung inflammation and injury. Proc. Natl Acad. Sci. USA. 2010; 107 (12): 5587-92.
  33. Labandeira-Rey M., Couzon F., Boisset S. et al. Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science. 2007; 315 (5815): 1130-3.
  34. Bubeck W.J., Palazzolo-Ballance A.M., Otto M. et al. Panton-Valentine leukocidin is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus aureus disease. J. Infect. Dis. 2008; 198 (8): 1166-70.
  35. Olsen R.J., Kobayashi S.D., Ayeras A.A. et al. Lack of a major role of Staphylococcus aureus Panton-Valentine leukocidin in lower respiratory tract infection in nonhuman primates. Am. J. Pathol. 2010; 176 (3): 1346-54.
  36. Wilson G.J., Seo K.S., Cartwright R.A. et al.A novel core genome-encoded superantigen contributes to lethality of community-associated MRSA necrotizing pneumonia. PLoS Pathog. 2011; 7 (10): e1002271.
  37. Holzinger D., Gieldon L., Mysore V. et al. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J. Leukoc. Biol. 2012; 92 (5): 1069-81.
  38. Perret M., Badiou C., Lina G. et al. Cross-talk between Staphylococcus aureus leukocidins-intoxicated macrophages and lung epithelial cells triggers chemokine secretion in an inflammasome-dependent manner. Cell. Microbiol. 2012; 14 (7): 1019-36.
  39. Loffler B., Hussain M., Grundmeier M. et al. Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog. 2010l 6 (1): e1000715.
  40. Szmigielski S., Prevost G., Monteil H., Colin D.A., Jeljaszewicz J. Leukocidal toxins of staphylococci. Zbl. Bakteriol. 1999; 289 (2): 185-201.
  41. Spaan A., Thomas H.T., van Rooijen W.J.M. et al. Staphylococcal Panton-Valentine leukocidin targets C5a receptors.Cell Host Microbe. 2013; 13 (5): 584-94.
  42. Niemann S., Ehrhardt C., Medina E. et al. Combined action of influenza virus and Staphylococcus aureus Panton-Valentine leukocidin provokes severe lung epithelium damage. J. Infect. Dis. 2012; 206 (7): 1138-48.
  43. Hager M., Cowland J.B., Borregaard N. Neutrophil granules in health and disease. J. Intern. Med. 2010; 268 (1): 25-34.
  44. Korkmaz B., Moreau T., Gauthier F. Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. Biochimie. 2008; 90 (2): 227-42.
  45. Garcia-Verdugo I., Descamps D. et al. Lung protease/antiprotease network and modulation of mucus production and surfactant activity. Biochimie. 2010; 92 (11): 1608-17.
  46. Cunha B.A., Pherez F.M., Durie N. Swine influenza (H1N1) and acute appendicitis. Heart Lung. 2010; 39 (6): 544-6.
  47. Herold S., Ludwig S., Pleschka S., Wolff T. Apoptosis signaling in influenza virus propagation, innate host defense, and lung injury. J. Leukoc. Biol. 2012; 92 (1): 75-82.
  48. McCullers J.A. Do specific virus-bacteria pairings drive clinical outcomes of pneumonia? Clin. Microbiol. Infect. 2013; 19 (2): 113-8.
  49. Iverson A.R., Boyd K.L., McAuley J.L. et al. Influenza virus primes mice for pneumonia from Staphylococcus aureus. J. Infect. Dis. 2011; 203 (6): 880-8.
  50. Passariello C., Nencioni L., Sgarbanti R. et al. Viral hemagglutinin is involved in promoting the internalisation of Staphylococcus aureus into human pneumocytes during influenza A H1N1 virus infection. Int. J. Med. Microbiol. 2011; 301 (2): 97-104.
  51. Scheiblauer H., Reinacher M., Tashiro M., Rott R. Interactions between bacteria and influenza A virus in the development of influenza pneumonia. J. Infect. Dis. 1992; 166 (4): 783-91.
  52. Tashiro M., Ciborowski P., Klenk H.D. et al. Role of Staphylococcus protease in the development of influenza pneumonia. Nature. 1987; 325 (6104): 536-7.
  53. Small C.L., Shaler C.R., McCormick S. et al. Influenza infection leads to increased susceptibility to subsequent bacterial superinfection by impairing NK cell responses in the lung. J. Immunol. 2010; 184 (4): 2048-56.
  54. Sun K., Metzger D.W. Inhibition of pulmonary antibacterial defense by interferon-gamma during recovery from influenza infection. Nature Med. 2008; 14 (5): 558-64.
  55. Zavitz C.C., Bauer C.M., Gaschler G.J. et al. Dysregulated macrophage-inflammatory protein-2 expression drives illness in bacterial superinfection of influenza. J. Immunol. 2010; 184 (4): 2001-13.
  56. Dessing M.C., van der Sluijs K.F., Florquin S., van der Poll T. Monocyte chemoattractant protein 1 contributes to an adequate immune response in influenza pneumonia. Clin. Immunol. 2007; 125 (3): 328-36.
  57. Wareing M.D., Lyon A.B., Lu B., Gerard C., Sarawar S.R. Chemokine expression during the development and resolution of a pulmonary leukocyte response to influenza A virus infection in mice. J. Leukoc. Biol. 2004; 76 (4): 886-95.
  58. Bordon J., Aliberti S., Fernandez-Botran R. et al. Understanding the roles of cytokines and neutrophil activity and neutrophil apoptosis in the protective versus deleterious inflammatory response in pneumonia. Int. J. Infect. Dis. 2013; 17 (2), e76-e83.
  59. Teijaro J.R., Walsh K.B., Cahalan S. et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell. 2011; 146 (6): 980-91.
  60. Lowy F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998; 339 (8): 520-32.
  61. Watkins R.R., David M.Z., Salata R.A. Current concepts on the virulence mechanisms of meticillin-resistant Staphylococcus aureus. J. Med. Microbiol. 2012; 61(Pt 9): 1179-93.
  62. Kreienbuehl L., Charbonney E., Eggimann P. Community-acquired necrotizing pneumonia due to methicillin-sensitive Staphylococcus aureus secreting Panton-Valentine leukocidin: a review of case reports. Ann. Intensive Care. 2011; 1 (1): 52.
  63. van Wetering S., Mannesse-Lazeroms S.P., Dijkman J.H., Hiemstra P. S. Effect of neutrophil serine proteinases and defensins on lung epithelial cells: modulation of cytotoxicity and IL-8 production. J. Leukoc. Biol. 1997; 62 (2): 217-26.
  64. Yoong P., Pier G.B. Antibody-mediated enhancement of community-acquired methicillin-resistant Staphylococcus aureus infection. Proc. Natl Acad. Sci. USA. 2010; 107 (5): 2241-6.
  65. Hermos C.R., Yoong P., Pier G.B. High levels of antibody to Panton-Valentine leukocidin are not associated with resistance to Staphylococcus aureus-associated skin and soft-tissue infection. Clin. Infect. Dis. 2010; 51 (10): 1138-46.
  66. Al-Tawfiq J.A., Aldaabil R.A. Community-acquired MRSA bac-teremic necrotizing pneumonia in a patient with scrotal ulceration. J. Infect. 2005; 51 (4): e241-3.

Copyright (c) 2014 Eco-vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies