Prevalence of antimicrobial-resistant opportunistic pathogens in postpartum women and factors influencing their detection: a review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Antimicrobial resistance in opportunistic microorganisms is a significant challenge to global public health. Despite extensive research, data on the prevalence of resistant opportunistic pathogens in postpartum women is limited and highly heterogeneous.

This article summarizes current data on the prevalence of antimicrobial-resistant opportunistic pathogens colonizing the birth canal in postpartum women and analyzes the factors determining their detection likelihood. The study reviewed 45 papers published between 2000 and 2025. The following keywords were used to search the PubMed and Google Scholar search engines and in the electronic scientific libraries eLibrary.ru and the National Center for Biotechnology Information (NCBI): условно-патогенные микроорганизмы (opportunistic infections), резистентность к антимикробным препаратам (drug resistance, microbial), родильницы (postpartum period), колонизация родовых путей (birth canal colonization), генетические детерминанты резистентности (genetic determinants of resistance). A total of 7179 articles were selected.

A review of publications showed that the most prevalent resistant opportunistic microorganisms detected in postpartum women were Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Enterococcus spp. Studies reported critical levels of resistance to beta-lactams, including third-generation cephalosporins and carbapenems, with substantial differences in resistance levels across regions. Key risk factors for birth canal colonization with antimicrobial-resistant opportunistic pathogens in postpartum women included invasive obstetric interventions, inappropriate antibiotic therapy, and prolonged hospitalization. Such colonization can lead to clinically significant consequences, including a higher risk of postpartum infectious complications, increased maternal mortality rates, and vertical transmission of antimicrobial-resistant pathogens to neonates.

The review suggests the need for a strategy to control colonization of the birth canal by antimicrobial-resistant opportunistic microorganisms in postpartum women. This strategy should include optimizing screening, antibacterial prophylaxis and treatment, and genomic surveillance for postpartum purulent-septic infections.

About the authors

Svetlana S. Smirnova

Federal Scientific Research Institute of Viral Infections «Virome»; Ural State Medical University

Author for correspondence.
Email: smirnova_ss69@mail.ru
ORCID iD: 0000-0002-9749-4611
SPIN-code: 3127-4296

MD, Dr. Sci. (Medicine), Assistant Professor

Russian Federation, Ekaterinburg; Ekaterinburg

Yulia S. Stagilskaya

Federal Scientific Research Institute of Viral Infections «Virome»; Ural State Medical University

Email: stagilskaya_ys@niivirom.ru
ORCID iD: 0009-0000-9261-5624
SPIN-code: 2923-4892

MD

Russian Federation, Ekaterinburg; Ekaterinburg

References

  1. Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019 [Internet]. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019 [updated 2023 Dec; cited 2025 Apr 28]. Available from: https://stacks.cdc.gov/view/cdc/82532. doi: 10.15620/cdc:82532
  2. World Health Organization. Antimicrobial resistance [Internet]. Geneva: World Health Organization (WHO); 2024 November 21 [cited 2025 Apr 28]. Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  3. Balushkina AA, Tyutyunnik VL. Basic principles of antibacterial therapy in obstetric practice. Russian Journal of Woman and Child Health. 2014;22(19):1425–1427. (In Russ.) EDN: THWUQF
  4. Mor G, Cardenas I. Review article: the immune system in pregnancy: a unique complexity. American journal of reproductive immunology. Am J Reprod Immunol. 2010;63(6):425–433. doi: 10.1111/j.1600-0897.2010.00836.x
  5. Robinson DP, Klein SL. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm Behavior. 2012;62(3):263–271. doi: 10.1016/j.yhbeh.2012.02.023
  6. European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report 2023 [Internet]. Stockholm: European Centre for Disease Prevention and Control; 2024 [cited 2024 July 18]. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/antimicrobial-resistance-annual-epidemiological-report-EARS-Net-2023.pdf
  7. World Health Organization. WHO recommendations for prevention and treatment of maternal peripartum infections [Internet]. Geneva: World Health Organization; 2015 [cited 2025 Apr 28]. Available from: https://www.who.int/publications/i/item/9789241549363
  8. Centers for Disease Control and Prevention. Prescription medication use [Internet]. Atlanta, GA: CDC; 2022 [cited 2025 Apr 28]. Available from: https://www.cdc.gov/breastfeeding-special-circumstances/hcp/vaccine-medication-drugs/prescriptions.html
  9. Smirnova SS, Egorov IA, Golubkova AA. Purulent-septic infections in postpartum women. Part 2. Clinical and pathogenetic characteristics of nosological forms, etiology, and antibiotic resistance (literature review). Journal of microbiology, epidemiology and immunobiology. 2022;99(2):244–259. doi: 10.36233/0372-9311-227 EDN: HAFZDH
  10. Denamur E, Clermont O, Bonacorsi S, Gordon D. The population genetics of pathogenic Escherichia coli. Nat Rev Microbiol. 2021;19(1):37–54. doi: 10.1038/s41579-020-0416-x EDN: MDSSWV
  11. Mikhaylova Yu, Tyumentseva M, Karbyshev K, et al. Interrelation between pathoadaptability factors and CRISPR-element patterns in the genomes of Escherichia coli isolates collected from healthy puerperant women in Ural region, Russia. Pathogens. 2024;13(11):997. doi: 10.3390/pathogens13110997 EDN: UDKZRO
  12. Smaill FM, Grivell RM. Antibiotic prophylaxis versus no prophylaxis for preventing infection after cesarean section. Cochrane Database Syst Rev. 2014;2014(10). doi: 10.1002/14651858.CD007482.pub3
  13. World Health Organization. Global antimicrobial resistance and use surveillance system (GLASS) report: 2022 [Internet]. Geneva: World Health Organization; 2022 [cited 2025 Apr 28]. Available from: https://www.who.int/publications/i/item/9789240062702
  14. European Centre for Disease Prevention and Control. Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals — protocol version 4.3 [Internet]. Stockholm: ECDC; 2024 [cited 2025 Apr 28]. Available from: https://www.ecdc.europa.eu/en/publications-data/point-prevalence-survey-healthcare-associated-infections-and-antimicrobial-use
  15. World Health Organization. GLASS report: early implementation 2020. [Internet]. Geneva: World Health Organization; 2020 [cited 2025 Apr 28]. Available from: https://www.who.int/publications/i/item/9789240005587
  16. The Review on Antimicrobial Resistance. Tackling drug-resistant infections globally: final report and recommendations. [Internet]. London: Wellcome Trust; 2016 [cited 2025 Apr 28]. Available from: https://amr-review.org/
  17. Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327. doi: 10.1016/S1473-3099(17)30753-3
  18. Gandra S, Mojica N, Klein EY, et al. Trends in antibiotic resistance among major bacterial pathogens isolated from blood cultures tested at a large private laboratory network in India, 2008–2014. Int J Infect Dis. 2016;50:75–82. doi: 10.1016/j.ijid.2016.08.002
  19. Tian L, Zhang Z, Sun Z. Antimicrobial resistance trends in bloodstream infections at a large teaching hospital in China: a 20-year surveillance study (1998–2017). Antimicrob Resist Infect Control. 2019;8(1):86. doi: 10.1186/s13756-019-0545-z
  20. Rondon C, Garcia C, Krapp F, et al. Antibiotic point prevalence survey and antimicrobial resistance in hospitalized patients across Peruvian reference hospitals. J Infect Public Health. 2023;16(S1):52–60. doi: 10.1016/j.jiph.2023.10.030 EDN: OBEIOH
  21. Williams A, Coombs GW, Bell JM, et al. Antimicrobial resistance in Staphylococcus aureus and Enterococcus spp. isolates from bloodstream infections in Australian children, 2013–2021. J Pediatric Infect Dis Soc. 2025;14(2):piae110. doi: 10.1093/jpids/piae110 EDN: JRJAGJ
  22. Aguilera-Alonso D, Escosa-García L, Epalza C, et al. Antibiotic resistance in bloodstream isolates from high-complexity paediatric units in Madrid, Spain: 2013–2021. J Hosp Infect. 2023;139:33–43. doi: 10.1016/j.jhin.2023.05.021 EDN: HUSSTG
  23. Diallo OO, Baron SA, Dubourg G, et al. Major discrepancy between factual antibiotic resistance and consumption in South of France: analysis of 539,037 bacterial strains. Sci Rep. 2020;10(1):18262. doi: 10.1038/s41598-020-75158-7 EDN: JPEDIA
  24. Le Page S, Dubourg G, Baron SA, et al. No global increase in resistance to antibiotics: a snapshot of resistance from 2001 to 2016 in Marseille, France. Eur J Clin Microbiol Infect Dis. 2019;38(2):395–407. doi: 10.1007/s10096-018-3439-8 EDN: AQFMIJ
  25. Liao JX, Appaneal HJ, Menon A, et al. Decreasing antibiotic resistance trends nationally in gram-negative bacteria across United States veterans affairs medical centers, 2011–2020. Infect Dis Ther. 2023;12(7):1835–1848. doi: 10.1007/s40121-023-00827-9 EDN: OSRZEA
  26. Nedbal C, Mahobia N, Browning D, Somani BK. Gram negative bacteria related urinary tract infections: spectrum of antimicrobial resistance over 9 years in a University tertiary referral Hospital. Ther Adv Infect Dis. 2024;11. doi: 10.1177/20499361241228342 EDN: GVEVZM
  27. World Health Organization. WHO recommendations on maternal and newborn care for a positive postnatal experience [Internet]. Geneva: World Health Organization; 2022 [cited 2025 Apr 28]. Available from: https://www.who.int/publications/i/item/9789240045989
  28. Savelyeva GM. My view on the current state of obstetrics and perinatology. Rossiiskii vestnik akushera-ginekologa. 2019;19(2):7–13. doi: 10.17116/rosakush2019190217 EDN: NXUVDF
  29. Sáez-López E, Guiral E, Fernández-Orth D, et al. Vaginal versus obstetric infection Escherichia coli isolates among pregnant women: antimicrobial resistance and genetic virulence profile. PLoS One. 2016;11(1):e0146531. doi: 10.1371/journal.pone.0146531
  30. World Health Organization. Global action plan on antimicrobial resistance [Internet]. Geneva: World Health Organization; 2015. [cited 2025 Apr 28]. Available from: https://www.who.int/publications/i/item/9789241509763
  31. Kozlov RS. The problem of antibiotic resistance in obstetrics and gynecology. Russian Journal of Woman and Child Health. 2014;22(1):79. (in Russ.) EDN: SLRNCD
  32. European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2023 — 2021 data [Internet]. Stockholm: ECDC; 2023. [cited 2025 Apr 28]. Available from: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2023-2021-data
  33. Russell NJ, Seale AC, O’Driscoll M, et al. Maternal colonization with group B Streptococcus and serotype distribution worldwide: systematic review and meta-analyses. Clin Infect Dis. 2017;65(S2):S100–S111. doi: 10.1093/cid/cix658
  34. Bebell LM, Ngonzi J, Bazira J, et al. Antimicrobial-resistant infections among postpartum women at a Ugandan referral hospital. PLoS One. 2017;12(4):e0175456. doi: 10.1371/journal.pone.0175456
  35. Sterling TR, Njie G, Zenner D, et al. Guidelines for the treatment of latent tuberculosis infection: recommendations from the national tuberculosis controllers association and CDC, 2020. MMWR Recomm Rep. 2020;69(No.RR-1):1–11. doi: 10.15585/mmwr.rr6901a1 EDN: MRBYSY
  36. Liao J, Shenhav L, Urban JA, et al. Microdiversity of the vaginal microbiome is associated with preterm birth. Nat Commun. 2023;14(1):4997. doi: 10.1038/s41467-023-40719-7 EDN: EBMOCV
  37. Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing. On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2023: State report [Internet]. 2023. [cited 2025 Apr 28]. Available from: https://rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=27779
  38. American College of Obstetricians and Gynecologists. Optimizing postpartum care [Internet]. 2018 May [cited 2025 Apr 28]. Available from: https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2018/05/optimizing-postpartum-care
  39. Russian Society of Obstetricians and Gynecologists. Clinical guidelines: Normal postpartum period (postpartum care and examination) [Internet]. [cited 2025 Apr 28]. Available from: https://roag-portal.ru/recommendations_obstetrics
  40. Kulakov VI, Serov VN, editors. Rational pharmacotherapy in obstetrics and gynecology. Moscow: Litterra; 2015. 720 p. (in Russ.) [cited 2025 Jun 4]. ISBN: 978-5-4235-0198-3 Available from: https://www.studentlibrary.ru/book/ISBN9785423501983.html
  41. bioMérieux [Internet]. Mitigating global disparities in the fight against antimicrobial resistance. 2024 [cited 2025 Apr 28]. Available from: https://www.biomerieux.com/us/en/blog/antimicrobial-resistance-stewardship/Mitigating-Global-Disparities-Fight-Against-Antimicrobial-Resistance.html
  42. Monari C, Onorato L, Coppola N, et al. Burden of antimicrobial resistance among women with post-partum infections in low-middle income countries: a systematic review. J Epidemiol Glob Health. 2024;14(2):274–290. doi: 10.1007/s44197-024-00222-8 EDN: CPGRWT
  43. World Health Organization. Pathogens prioritization: a scientific framework for epidemic and pandemic research preparedness [Internet]. Geneva: World Health Organization; 2025 [cited 2025 Jun 16]. Available from: https://www.who.int/publications/m/item/pathogens-prioritization-a-scientific-framework-for-epidemic-and-pandemic-research-preparedness
  44. Al Kadri HM, El-Metwally AA, Al Sudairy AA, et al. Antimicrobial resistance among pregnant women with urinary tract infections is on rise: Findings from meta-analysis of observational studies. J Infect Public Health. 2024;17(7):102467. doi: 10.1016/j.jiph.2024.05.055 EDN: PCFXKR
  45. Salmanov AG, Vitiuk AD, Zhelezov D, et al. Prevalence of postpartum endometritis and antimicrobial resistance of responsible pathogens in Ukraine: results a multicenter study (2015–2017). Wiad Lek. 2020;73(6):1177–1183. doi: 10.36740/WLek202006119 EDN: NPWLTQ
  46. Salmanov AG, Voitok TG, Maidannyk IV, et al. Episiotomy infections in the puerperium and antimicrobial resistance of responsible pathogens in Ukraine. Wiad Lek. 2020;73(11):2325–2331. doi: 10.36740/WLek202011101 EDN: ZNJBTV
  47. Salmanov AG, Shchedrov AO, Prishchepa AP, et al. Postpartum infections and antimicrobial resistance of responsible pathogens in Ukraine: results a multicenter study (2020–2022). Wiad Lek. 2024;77(3):375–382. doi: 10.36740/WLek202403101 EDN: BPLBCK
  48. Salmanov AG, Savchenko SE, Chaika K, et al. Postpartum mastitis in the breastfeeding women and antimicrobial resistance of responsible pathogens in Ukraine: results a multicenter study. Wiad Lek. 2020;73(5):895–903. doi: 10.36740/WLek202005111 EDN: UCSYPG
  49. Salmanov AG, Vitiuk AD, Ishchak OM, et al. Surgical site infection after cesarean section in Ukraine: results a multicenter study. Wiad Lek. 2021;74(4):934–939. doi: 10.36740/wlek202104123 EDN: MMYIOS
  50. Korobkov NA, Bakulina NV, Kakhiiani EI. Prognosis and effectiveness of antibacterial treatment of endometritis after cesarian section with isolation drug-resistent ESKAPE pathogens. HERALD of North-Western State Medical University named after I.I. Mechnikov. 2020;12(3):35–40. doi: 10.17816/mechnikov34916 EDN: VJFAZT
  51. Malmir M, Boroojerdi NA, Masoumi SZ, Parsa P. Factors affecting postpartum infection: a systematic review. Infect Disord Drug Targets. 2022;22(3):e291121198367. doi: 10.2174/1871526521666211129100519 EDN: TQNBMB
  52. Zou Q, Zou H, Shen Y, et al. Pathogenic spectrum and resistance pattern of bloodstream infections isolated from postpartum women: a multicenter retrospective study. Infect Drug Resist. 2021;14:2387–2395. doi: 10.2147/IDR.S315367 EDN: IPATNY
  53. Iweriebor BC, Afolabi KO, Egbule OS, et al. Evaluation of the prevalence, antimicrobial resistance trait, and virulence determinants in Staphylococcus aureus isolates from the anogenital area of 35–37 weeks pregnant women. Acta Microbiol Bulg. 2024;40(3):336–346. doi: 10.59393/amb24400307 EDN: WAMVAL
  54. Lerminiaux NA, Cameron AD. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol. 2019;65(1):34–44. doi: 10.1139/cjm-2018-0275
  55. Palmer KL, Kos VN, Gilmore MS. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr Opin Microbiol. 2010;13(5):632–639 . doi: 10.1016/j.mib.2010.08.004
  56. Sun D, Jeannot K, Xiao Y, Knapp C. Editorial: horizontal gene transfer mediated bacterial antibiotic resistance. Front Microbiol. 2019;10. doi: 10.3389/fmicb.2019.01933
  57. Maddamsetti R, Yao Y, Wang T, et al. Duplicated antibiotic resistance genes reveal ongoing selection and horizontal gene transfer in bacteria. Nat Comm. 2024;15(1):1449. doi: 10.1038/s41467-024-45638-9 EDN: ABLNMK
  58. von Wintersdorff CJ, Penders J, van Niekerk JM, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016;7. doi: 10.3389/fmicb.2016.00173
  59. Agarev AE, Zdolnik TD, Kovalenko MS, Zotov VV. Forecasting of development of healthcare-associated infectons in puerperas. I.P. Pavlov Russian Medical Biological Herald. 2017;25(4):565–574. doi: 10.23888/PAVLOVJ20174565-574 EDN: ZWHSHP
  60. Agarev AE, Kovalenko MS, Isakov SA. Risk factors for the development of infections associated with the provision of medical care in the puerperas. Eruditio Juvenium. 2017;5(3):382–388. doi: 10.23888/HMJ20173382-388 EDN: ZFMGSD
  61. Sadykova ZR, Abdrakhmanov AR, Abdrakhmanov RM. Resistant acne forms in women of reproductive age. Modern problems of science and education. 2024;(1):5. doi: 10.17513/spno.33228 EDN: TTGQNN
  62. Osei Sekyere J, Reta MA, Bernard Fourie P. Risk factors for, and molecular epidemiology and clinical outcomes of, carbapenem- and polymyxin-resistant Gram-negative bacterial infections in pregnant women, infants, and toddlers: a systematic review and meta-analyses. Ann New York Acad Sci. 2021;1502(1):54–71. doi: 10.1111/nyas.14650 EDN: SPGXLM
  63. Saiman L, O’Keefe M, Graham PL, et al. Hospital transmission of community-acquired methicillin-resistant Staphylococcus aureus among postpartum women. Clin Infect Dis. 2003;37(10):1313–1319. doi: 10.1086/379022
  64. Salama AA, Salim SA, Alkalash SH. Prevalence and risk factors of post-partum infections at family health facilities in North Sinai, Egypt. Menoufia Med J. 2024;37(1):28. doi: 10.59204/2314-6788.1055 EDN: SHCDQC
  65. Denoble A, Reid HW, Krischak M, et al. Bad bugs: antibiotic-resistant bacteriuria in pregnancy and risk of pyelonephritis. Am J Obstet Gynecol MFM. 2022;4(2):100540. doi: 10.1016/j.ajogmf.2021.100540 EDN: CGTVOJ
  66. Lee AC, Mullany LC, Koffi AK. et al. Urinary tract infections in pregnancy in a rural population of Bangladesh: population-based prevalence, risk factors, etiology, and antibiotic resistance. BMC Pregnancy Childbirth. 2020;20(1):1–11. doi: 10.1186/s12884-019-2665-0 EDN: MJEMTL
  67. Al-Tawfiq JA, Rabaan AA, Saunar JV, Bazzi AM. Antimicrobial resistance of gram-negative bacteria: A six-year longitudinal study in a hospital in Saudi Arabia. J Infect Public Health. 2020;13(5):737–745. doi: 10.1016/j.jiph.2020.01.004 EDN: DRHRWC
  68. Ahrens KA, Palmsten K, Grantham CO, et al. Acute health care utilization in the first 24 months postpartum by rurality and pregnancy complications: a prospective cohort study. Health Serv Res. 2024;59(1):e14247. doi: 10.1111/1475-6773.14247 EDN: RKFURW
  69. Tirskaya YI, Dolgikh TI, Lazareva LI, et al. Features of pathogenic microflora at maternity patients with high infectious risk. Meditsina i Obrazovanie v Sibiri. 2013;1:16. EDN: QBMHQR
  70. Musaeva YaV, Khaskhanova, LH. Prevention of thromboembolic complications after cesarean section. Vestnik Meditsinskogo Instituta. 2020;1(17):69–74. doi: 10.36684/med-2020-17-1-69-74 EDN: MYULJR
  71. Barton MD. Antibiotic use in animal feed and its impact on human health. Nutr Res Rev. 2000;13(2):279–299. doi: 10.1079/095442200108729106
  72. Swarthout JM, Chan EMG, Garcia D, et al. Human colonization with antibiotic-resistant bacteria from nonoccupational exposure to domesticated animals in low- and middle-income countries: a critical review. Environ Sci Technol. 2022;56(21):14875–14890. doi: 10.1021/acs.est.2c01494 EDN: QTGRZN
  73. Pomba C, Rantala M, Greko C, et al. Public health risk of antimicrobial resistance transfer from companion animals. J Antimicrob Chemother. 2017;72(4):957–968. doi: 10.1093/jac/dkw481
  74. Chernenkaya TV, Godkov MA. The “challenging” multidrug-resistant pathogens of nosocomial infections in critically ill patients (a literature review). Russian Sklifosovsky Journal “Emergency Medical Care”. 2015;(3):30–35. EDN: UMABPL
  75. Gomez-Arango LF, Barrett HL, McIntyre HD, et al. Antibiotic treatment at delivery shapes the initial oral microbiome in neonates. Sci Rep. 2017;7(1):43481. doi: 10.1038/srep43481 EDN: YFCHZZ
  76. Bitew Kifilie A, Dagnew M, Tegenie B, et al. Bacterial profile, antibacterial resistance pattern, and associated factors from women attending postnatal health service at university of Gondar teaching hospital, Northwest Ethiopia. Int J Microbiol. 2018;2018:1–10. doi: 10.1155/2018/3165391
  77. Goldytski SO, Abelskaya IS, Slobodin YV, et al. Principles of antimicrobial therapy for urinary tract infections in the era of antibiotic resistance. Recipe. 2024;27(1):12–21. doi: 10.34883/PI.2024.27.1.010 EDN: ENUHRU
  78. Wall LL, Yemane A. Infectious complications of abortion. Open Forum Infect Dis. 2022;9(11):ofac553. doi: 10.1093/ofid/ofac553 EDN: TREOZD
  79. Salmanov AG, Baksheev SM, Kuflovskyi DV, et al. Healthcare associated infection after legal induced abortions in Ukraine: results a multicenter study. Wiad Lek. 2021;74(7):1559–1565. doi: 10.36740/WLek202107103 EDN: TRFFAH
  80. Podtetenev KS, Orazmuradov AA, Shishkin EA, et al. Antibacterial therapy in preterm labor and premature rupture of membranes. Vestnik Rossiyskogo Universiteta Druzhby Narodov. Seriya: Meditsina. 2011;5:292–297. EDN: RBIIJV
  81. Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance - the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–1098. doi: 10.1016/S1473-3099(13)70318-9 EDN: SPIOTF

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Eco-vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).