Some aspects of development of typhoid fever and persistent brucellosis infection

Cover Page

Cite item

Full Text

Abstract

Bacterial vacuolated intracellular parasites, such as Salmonella spp. and Brucella spp., possess the ability to cause persistent, long-life chronic infection during which the microbe continues to replicate inside the host organism in spite of the development of an immune response. Such bacteria develop a strategy to evade the immune response, which plays a key role in the development of chronic infection. The implementation of this strategy is aimed at inhibiting the action of factors of innate immunity. In brucella, this process is mediated by the noncanonical structure of lipopolysaccharide (LPS), as a result of which the pathogen is not recognized by the cells of innate immunity, as well as by the functioning of T4CC, the effector proteins of which block the development of the inflammatory response. The strategy of S. Typhi is realized via the expression of genes of pathogenicity island 7 encoding Vi-antigen and genotoxin. Vi-antigen inhibits recognition of the microbe by cells of the innate immune system. Typhoid genotoxin causes the death of immune cells. Brucella realizes this strategy via the noncanonical structure of LPS and T4SS, effector proteins of which block the development of inflammation. Alternative activated macrophages appear during chronic infection caused by both pathogens. These microbes are able to regulate the metabolism of macrophages according to their needs while persisting in them. A review of the sources of information on this problem allows us to conclude that both the causative agent of typhoid fever S. Typhi and the causative agents of brucellosis use the same strategies for the development of a chronic infectious process, but the implementation of these strategies is carried out specifically.

About the authors

Marina N. Bojchenko

I.M. Sechenov First Moscow State Medical University

Email: shado-2002@yandex.ru
ORCID iD: 0000-0002-9706-2691
SPIN-code: 3038-6834

MD, PhD, Professor

Russian Federation, Moscow

Elena O. Kravtsova

I.M. Sechenov First Moscow State Medical University

Author for correspondence.
Email: elenakravtsov@yandex.ru
ORCID iD: 0000-0002-9100-0422
SPIN-code: 2660-6495

MD, PhD, assistant professor

Russian Federation, Moscow

Elena V. Budanova

I.M. Sechenov First Moscow State Medical University

Email: e.v.budanova@gmail.ru
ORCID iD: 0000-0003-1864-5635
SPIN-code: 8534-4961

MD, PhD, assistant professor

Russian Federation, Moscow

Olga F. Belaia

I.M. Sechenov First Moscow State Medical University

Email: ofbelaya@mail.ru
ORCID iD: 0000-0002-2722-1335
SPIN-code: 3921-7227

MD, PhD, full professor

Russian Federation, Moscow

Natalya V. Maloletneva

I.M. Sechenov First Moscow State Medical University

Email: natalya-maloletneva@yandex.ru
ORCID iD: 0000-0003-0430-731X
SPIN-code: 8267-9750

MD, PhD, assistant professor

Russian Federation, Москва

Karina T. Umbetova

I.M. Sechenov First Moscow State Medical University

Email: karinasara@inbox.ru
ORCID iD: 0000-0003-0902-9267
SPIN-code: 3197-9205

MD, PhD, assistant professor

Russian Federation, Moscow

References

  1. Byndloss MX, Tsolis RM. Chronic bacterial pathogens: mechanisms of persistence. Microbiol Spectr. 2016;4(2): doi: 10.1128/microbiospec.VMBF-0020-2015.
  2. Thakur A, Mikkelsen H, Jungersen G. Intracellular pathogens: host immunity and microbial resistance strategies. J Immunol Res. 2019:1356540. doi: 10.1155/2019/1356540.7.
  3. Gal-Mor Oh, Boyle EC, Grassl GA. Same species different disease: how and why typhoidal and non-typhoidal Salmonella enteric serovars differ. Front microbiology. 2014;5:391-398. doi: 10.3389/fmicb.2014.00391.
  4. Boichenko MN, Zverev VV, Volchkova EV. Interaction of salmonella with host organism. Journal of Microbiology, Epidemiology and Immunobiology. 2017;4:91-100. (In Russ) doi: 10.36233/0372-9311-2017-4-91-100.
  5. Boichenko MN, Kravtsova EO, Volchkova EV, et al. Some problems of molecular patethogenesis of intracellular parasitism of bacteria. Infectious diseases. 2017;15(4):77-81. (In Russ) doi: 10.20953/1729-9225-2017-4-77-81.
  6. O’Neill LAJ, Hardie DJ. Metabolism of inflammation limited by AMPK and pseudo starvation. Nature. 2013,493:346-355. doi: 10.1038/nature11862.
  7. Winter SE, Winter MG, Thiennimitr P, et al. The TviA auxiliary protein renders the Salmonella enterica serotype typhi RcsB regulon responsive to changes in osmolarity. Mol Microbiol. 2009;74:175–193. doi: 10.1111/j.1365-2958.2009.06859.x.9.
  8. Sabbagh SC, Forest CG, Lepage C, et al. So similar yet different: unconverting distinctive features in the genomes of Salmonella enterica serovar typhimurium and typhi. FEMS Microbiol Lett. 2010;305:1-13. doi: 10.1111/j.1574-6968.2010.01904.x.
  9. Galan JE. Typhoid toxin provides a window into typhoid fever and the biology of Salmonella typhi. Proc. Nat. Acad. Sci. USA. 2016;113(23):6338-6344. doi: 10.1073/pnas.1606335113.
  10. Gibani M, Jones E, Barton A, et al. Investigation of the role of typhoid toxin in acute typhoid fever in a human challenge model. Nat Med. 2019;25(7):1082-1088. doi: 10.1038/s41591-019-0505-4.10.
  11. Hodak H, Galan JE. A Salmonella typhi homologue of bacteriophage muramidases controls typhoid toxin secretion. EMBO Rep. 2013;14(1):95–102 doi: 10.1038/embor.2012.186.13.
  12. Spano S, Ugalde JE, Galan JE. Delivery of a Salmonella typhi exotoxin from a host intracellular compartment. Cell Host Microbe. 2008;3(1):30–38. doi: 10.1016/j.chom.2007.11.001.12.
  13. Del BelBelluz L, Guidid R, Pateras I, et al. The typhoid toxin promotes host survival and the establishment of a persistent asymptomatic infection. PLoS Pathog. 2016;12(4);e1005528. doi: 10.1371/journal.ppat.1005528.
  14. Song J, Willinger T, Rongvaux A, et al. A mouse model for the human pathogen Salmonella typhi. Cell Host Microbe. 2010;8(4):369–376. doi: 10.1016/j.chom.2010.09.003.
  15. Boichenko MN, Kravtsova EO, Zverev VV. Mechanism of intracellular bacterial parasitism. Journal of Microbiology, Epidemiology and Immunobiology. 2019;5:61-72. (In Russ) doi: 10.36233/0372-9311-2019-5-61-72.
  16. Celli J. The intracellular life cycle of Brucella spp. Microbial Spectr. 2019;7(2). doi: 10.1128/microbiolspec.BAI-006-2019.
  17. Ahmed W, Zeng K, Liu ZF. Establishment 0f chronic infection: Brucella’s stealth strategy. Front Cell Infect Microbiology. 2016;6:30-46. doi: 10.3389/fcimb.2016.00030b4.
  18. Conde-Alvarez R, Arce-Gorvel V, Iriate M, et al. The lipopolysaccharide core of Brucella abortus acts as shield against innate immunity recognition. Plos Pathog. 2012;8:e1002675. doi: 10.1371/journal.ppat.1002675.
  19. Salcedo SP, Marchesini MI, Degos C, et al. BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions. Front. Cell. Infect. Microbiol. 2013;3:28. doi: 10.3389/fcimb.2013.00028
  20. Snyder GA, Deredge D, Waldhuber A, et al. Crystal structures of the Toll/Interleukin-1receptor (TIR) domains from the Brucella protein TcpB and host adaptor TIRAP reveal mechanisms of molecular mimicry. J. Biol. Chem. 2014;289(2):669-679. doi: 10.1074/jbc.M113.523407.
  21. Atluri VL, Xavier MN, de Jong MF, et al. Interactions of the human pathogenic Brucella species with their hosts. Annu. Rev. Microbiol. 2011;65:523-541. doi: 10.146/annurevmicro-090110-102905.
  22. Kenny EF, O’Neill LAJ. Signalling adaptors used by Toll-like receptors: an update. Cytokine. 2008;43:342-349. doi: 10.1016/j.cyto.2008.07.010.
  23. Salcedo SP, Marchesini ML, Lelouard H, et al.. PLoS Pathog. 2008;4:e40021. doi: 10.1371/journal.ppat.0040021.
  24. Xavier MN, Winter MG, Spees AM, et al. PPARγ-mediated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated macrophages. Cell Host Microbe. 2013;14(2):159–170. doi: 10.1016/j.chom.2013.07.009.
  25. Eisele NA, Ruby T, Jacobson A, et al. Salmonella require the fatty acid regulator PPARδ for the establishment of a metabolic environment essential for long-term persistence. Cell Host Microbe. 2013;14(2):171-182. doi: 10.1016/j.chom.2013.07.010.
  26. Odegaard JI, Ricardo-Gonzales RR, Goforth MH, et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature. 2007;447:1116-1120. doi: 10.1038/nature05894.

Copyright (c) 2020 Eco-vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies