Current State of Vaccine Prophylaxis and Its Resource Supply in the Post-Pandemic Period: a Review
- Authors: Minaeva V.A.1,2, Golubkova A.A.1,3
-
Affiliations:
- Russian Medical Academy of Continuing Professional Education
- Children’s City Polyclinic No. 86
- Central Research Institute of Epidemiology
- Issue: Vol 29, No 6 (2024)
- Pages: 432-443
- Section: Reviews
- URL: https://journals.rcsi.science/1560-9529/article/view/314473
- DOI: https://doi.org/10.17816/EID636229
- EDN: https://elibrary.ru/UECWJZ
- ID: 314473
Cite item
Abstract
At present, the global community views vaccination as the most accessible and economically efficient infection control technology, a pathway to active longevity, and one of the most powerful public health tools with proven epidemiological effectiveness. The National Immunization Schedule (NIS) of the Russian Federation is constantly being improved in response to various challenges and changes in the epidemic situation. In recent years, the list of infections for which vaccines have been included in the NIS has expanded, including for epidemic indications; the vaccination strategy has changed in terms of expanding the indications for vaccination in the populations at risk. However, the existing system of vaccination coverage indicators in target groups does not allow for monitoring the timeliness of vaccination initiation, as it only considers those who have completed the immunization process. Vaccinations outside the target age groups do not ensure protection for infants, who are the most vulnerable to infection, and the catch-up and clean-up vaccination strategies do not quickly correct missed vaccination opportunities within the prescribed timelines, which has led to an unstable situation in recent years regarding several vaccine-preventable infections such as measles, pertussis, and mumps.
It should be noted that during the COVID-19 pandemic, the routine vaccination programs for children suffered significantly. A substantial disruption in immunization of varying degrees occurred in all regions monitored by the World Health Organization (WHO). As early as May 2020, in the first year of the pandemic, the WHO reported that at least 80 million children under the age of one year had missed vital vaccinations. The emerging problems can only be addressed promptly through the use of modern digital technologies, with the development of entirely new qualitative indicators for assessing the vaccination coverage of the pediatric population at all levels of outpatient care (local health districts, outpatient departments, ambulatory care centers) and educational institutions for children.
Lack of information on the timeliness of vaccination initiation in paper reports does not allow for prompt assessment and correction of the situation. The transition to digital technologies in vaccination reporting makes is possible to address these shortcomings in real time and implement corrective actions in a timely manner. Another key area in improving epidemiological surveillance of vaccine-preventable diseases is the assessment of the extent to which disease incidence and transmission rates in a given area depend on preventive vaccination coverage, as well as the monitoring of vaccine composition compatibility with the antigenic profiles of circulating genetic variants of pathogens — activities that require modern resource support.
Full Text
##article.viewOnOriginalSite##About the authors
Victoria A. Minaeva
Russian Medical Academy of Continuing Professional Education; Children’s City Polyclinic No. 86
Author for correspondence.
Email: minaevava@zdrav.mos.ru
ORCID iD: 0000-0002-2434-6706
SPIN-code: 5473-5651
Russian Federation, Moscow; Moscow
Alla A. Golubkova
Russian Medical Academy of Continuing Professional Education; Central Research Institute of Epidemiology
Email: allagolubkova@yandex.ru
ORCID iD: 0000-0003-4812-2165
SPIN-code: 6133-2572
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Moscow; MoscowReferences
- Feldblyum IV. Epidemiologic surveillance over preventive vaccination. Medialʹ. 2014;(3):37–55. EDN: SXHKNX
- Brira NI, Feldblum IV. Immunoprophylaxis of infectious diseases in Russia: Condition and perspective of improvement. Epidemiology & Vaccinal prevention. 2017;16(2):4–9. doi: 10.31631/2073-3046-2017-16-2-4-9. EDN: YLERIF
- Baranov АA, Briko NI, Vishneva EA, et al. Vaccines and immunoprophylaxis in the modern world. A guide for physicians. Moscow: Pediatr”; 2021. 646 p. (In Russ.)
- Feldblium IV. Modern issues of vaccinal prevention. Preventiv and clinical medicine. 2017;(2):20–27. EDN: YQRFMF
- Vesikari T, van Damme P. Pediatric vaccines and vaccinations: A European textbook. Springer; 2021. 277 p.
- Ferreira C, Doursout MF, Balingit JS. The first 1000 years CE of pandemics: Smallpox and plague. In: 2000 Years of pandemics, past, present, and future. Springer; 2023. P. 1–16. doi: 10.1007/978-3-031-10035-2_1
- Hübschen JM, Gouandjika-Vasilache I, Dina J. Measles. Lancet. 2022;399(10325):678–690. doi: 10.1016/s0140-6736(21)02004-3
- Shamsheva OV. National calendar of preventive vaccinations implementation ways. Pediatriya. Zhurnal imeni G.N. Speranskogo. 2016;95(2):83–90. EDN: VOXDXF
- Golubkova AA, Platonova TA, Kharitonov AN, et al. Measles. Characteristics of the epidemic process and its determinant in real-time conditions (on the example of a measles outbreak in yekaterinburg in 2016). Epidemiology & Vaccinal prevention. 2017;16(6):54–58. doi: 10.31631/2073-3046-2017-16-6-54-58 EDN: ZXRCMZ
- Tsvirkun OV. The epidemic process of measles during different periods of vaccine prophylaxis [dissertation abstract]. Moscow; 2014. 46 р. (In Russ.) EDN: ZPLWVF Available from: https://www.prlib.ru/item/1302172 Accessed: Jan 13, 2025.
- Golubkova A, Platonova T, Olshvang O, et al. Measles: Manifestations at the stage of elimination of infection and directions for effective management of the epidemic process. Med Surg J. 2018;122(1):146–152.
- Briko NI, Brazhnikov AYu, Antipov MO, et al. Epidemiology. Briko NI, editor. Moscow: GEOTAR-Media; 2023. 648 р. (In Russ.)
- Romanenko VV. Immunoprophylaxis of infectious diseases in the system of child population health management in the subject of the Russian Federation [dissertation abstract]. Ekaterinburg; 2012. (In Russ.) EDN: QIEGYL Available from: https://medical-diss.com/docreader/355949/d?#?page = 1 Accessed: Jan 13, 2025.
- Tatochenko ВK, Ozeretskovsky NA, Fedorov AM. Immunoprophylaxis 2014: A handbook. 12th ed. Moscow: Pediatr”; 2014. 280 р. (In Russ.) EDN: ZVCUNX
- Ermolenko KD, Kharit SM, Ruleva AA, Drozdova LYu. Establishing a dialogue with a patient on vaccination (scientific review). Epidemiology & Vaccinal prevention. 2021;20(1):114–124. doi: 10.31631/2073-3046-2021-20-1-114-124 EDN: DKFMYT
- Dmitrieva OA, Mironova OIu, Fomin VV. Influenza vaccination and prognosis for patients with high cardiovascular risk. Therapeutic archive. 2021;93(9):1100−1105. doi: 10.26442/00403660.2021.09.201023 EDN: POKNTK
- Semenov BF, Zverev VV, Khaitov RM. Prospects for development of immunoprophylaxis up to 2020-2030. Journal of microbiology, epidemiology and immunobiology. 2010;(2):105–111. EDN: RURIJX
- Izurieta P, Bahety P, Adegbola R, et al. Public health impact of pneumococcal conjugate vaccine infant immunization programs: Assessment of invasive pneumococcal disease burden and serotype distribution. Expert Rev Vaccines. 2018;17(6):479–493. doi: 10.1080/14760584.2018.1413354
- Baranov AA, Namazova-Baranova LS, Tatochenko VK, et al. Vaccinal prevention of the diseases caused by human papillomavirus: Evidence-based medicine. Review of clinical guidelines. Current Pediatrics. 2017;16(2):107–117. doi: 10.15690/vsp.v16i2.1711 EDN: YRGVQZ
- Crowe E, Pandeya N, Brotherton JM, et al. Effectiveness of quadrivalent human papillomavirus vaccine for the prevention of cervical abnormalities: Case-control study nested within a population based screening programme in Australia. BMJ. 2014;348:g1458. doi: 10.1136/bmj.g1458
- Leval A, Herweijer E, Ploner A, et al. Quadrivalent human papillomavirus vaccine effectiveness: A Swedish national cohort study. J Natl Cancer Inst. 2013;105(7):469–474. doi: 10.1093/jnci/djt032
- Namazova-Baranova LS, Fedoseenko MV, Baranov AA. New horizons of national immunization calendar. Current Pediatrics. 2019;18(1):13–30. doi: 10.15690/vsp.v18i1.1988 EDN: VYDXIL
- Okwo-Bele JM, Cherian T. The expanded programme on immunization: A lasting legacy of smallpox eradication. Vaccine. 2011;29(Suppl 4):D74–D79. doi: 10.1016/j.vaccine.2012.01.080
- Filippov OV, Bolshakova LN, Elagina TN, et al. Regional schedule of vaccination in Moscow: History, development, prospects. Epidemiology & Vaccinal prevention. 2020;19(4):63–75. doi: 10.31631/2073-3046-2020-19-4-63-75 EDN: EZULPK
- Gorelov AV, Usenko DV. Rotavirus infection in children. Current Pediatrics. 2008;7(6):78–84. EDN: KXFTHF
- Tkhakushinova PKh. Rotaviral infection in children. Epidemiology and Infectious Diseases. 2012;(2):56–59. doi: 10.17816/EID40675 EDN: PFRGLP
- On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2022: State report. Moscow: Federal Service for Supervision of Consumer Rights Protection and Human Welfare; 2023. 368 р. (In Russ.)
- Marin M, Marti M, Kambhampati A, et al. Global varicella vaccine effectiveness: A meta-analysis. Pediatrics. 2016;137(3):e20153741. doi: 10.1542/peds.2015-3741 EDN: WTTVRL
- Harder T, Siedler A. Systematic review and meta-analysis of chickenpox vaccination and risk of Herpes zoster: A quantitative view on the “exogenous boosting hypothesis”. Clin Infect Dis. 2019;69(8):1329–1338. doi: 10.1093/cid/ciy1099
- On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2018: State report. Moscow: Federal Service for Supervision of Consumer Rights Protection and Human Welfare; 2019. 254 р. (In Russ.)
- On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2019: State report. Moscow: Federal Service for Supervision of Consumer Rights Protection and Human Welfare; 2020. 247 р. (In Russ.)
- Romanenko VV, Kosova AA, Smirnova SS, et al. Organisation of the system of immunoprophylaxis of infectious diseases in the Sverdlovsk region: Textbook. Ekaterinburg: Ural State Medical University; 2023. 174 р. (In Russ.)
- Vlasov VA. Clinical and immunological features of pertussis in vaccinated and unvaccinated children [dissertation abstract]. Sverdlovsk; 1989. 25 р. (In Russ.) Available from: https://search.rsl.ru/ru/record/01000040289?ysclid = m83k4yrc5e140345423 Accessed: Jan 13, 2025.
- Gracheva NM, Devyatkin AV, Petrova MS, et al. Whooping cough (clinic, diagnosis, treatment). Poliklinika. 2016;(2-1):13–25. (In Russ.) EDN: WBFETN
- Chernova TM, Timchenko VN, Pedash AI, et al. Assessment of the timeliness of vaccination against pertussis in children of the first year of life and the reasons for the violation of the vaccination schedule. Jurnal infektologii. 2021;13(2):79–86. doi: 10.22625/2072-6732-2021-13-2-79-86 EDN: ZKITDO
- Chernova TM, Timchenko VN, Myskina NA, et al. Causes of violation of vaccination schedule in young children. Pediatrician. 2019;10(3):31–36. doi: 10.17816/PED10331-36 EDN: FACWBW
- Khodkevich PE, Kulikova KV, Deev IA, et al. Vaccination of premature newborns: Real clinical practice. Infectious diseases. 2022;20(3):50–58. doi: 10.20953/1729-9225-2022-3-50-58 EDN: SDYPZR
- Galitskaya MG, Lebedeva AM, Tkachenko NE, Makarova SG. Adherence to vaccination: Main trends in modern society. Russian pediatric journal. 2022;25(4):253. doi: 10.46563/1560-9561-2022-25-4-242-292 EDN: IPTCGO
- Aksenova VA. Russian and international approaches to vaccination against pneumococcal infection in children and adults at risk: Resolution of Expert Forum. Russian pulmonology. 2015;25(5):633–637. doi: 10.18093/0869-0189-2015-25-5-633-637 EDN: VEDQAZ
- Polunina NV, Pivovarov YuP, Milushkina OYu. Preventive medicine is a cornerstone of health promotion. Bulletin of Russian state medical university. 2018;(5):5–13. doi: 10.24075/brsmu.2018.058 EDN: VRCFBT
- Ruban AP. Catchup vaccination when a child’s immunization schedule is disrupted during the COVID-19 pandemic. Medical news. 2022;(4):20–30. EDN: QCTEFE
- Causey K, Fullman N, Sorensen RJ, et al. Estimating global and regional disruptions to routine childhood vaccine coverage during the COVID-19 pandemic in 2020: A modelling study. Lancet. 2021;398(10299):522–534. doi: 10.1016/S0140-6736(21)01337-4 EDN: FZBHQO
- Shet A, Carr K, Danovaro-Holliday MC, et al. Impact of the SARS-CoV-2 pandemic on routine immunisation services: Evidence of disruption and recovery from 170 countries and territories. Lancet Global Health. 2022;10(2):e186–e194. doi: 10.1016/s2214-109x(21)00512-x EDN: LEENFT
- Din M, Asghar M, Ali M. Delays in polio vaccination programs due to COVID-19 in Pakistan: A major threat to Pakistan’s long war against polio virus. Public Health. 2020;189:1–2. doi: 10.1016/j.puhe.2020.09.004 EDN: RFZMPL
- Aburish EY, Bustanji Y, Abusal K. Nationwide routine childhood vaccination coverage during the COVID-19 pandemic in Jordan: Current situation, reasons, and predictors of vaccination. Int J Clin Pract. 2022;2022:7918604. doi: 10.1155/2022/7918604 EDN: BHTUYW
- Zhong Y, Clapham HE, Aishworiya R, et al. Childhood vaccinations: Hidden impact of COVID-19 on children in Singapore. Vaccine. 2021;39(5):780–785. doi: 10.1016/j.vaccine.2020.12.054 EDN: MGWMIY
- Kang G. The SARS-CoV2 pandemic and routine immunisation. Lancet Global Health. 2022;10(2):e155–e156. doi: 10.1016/s2214-109x(21)00543-x EDN: IQPLPK
- Patel MK, Goodson JL, Alexander JP Jr, et al. Progress toward regional measles elimination: Worldwide, 2000–2019. MMWR Morb Mortal Wkly Rep. 2020;69(45):1700–1705. doi: 10.15585/mmwr.mm6945a6 EDN: PZSNSG
- Abbas KM, Brady OJ, Larson HJ, et al. Mapping routine measles vaccination in low-and middle-income countries. Nature. 2021;589(7842):415–419. doi: 10.1038/s41586-020-03043-4 EDN: ANEZGW
- Feldman AG, O’Leary ST, Danziger-Isakov L. The risk of resurgence in vaccine-preventable infections due to coronavirus disease 2019: Related gaps in immunization. Clin Infect Dis. 2021;73(10):1920–1923. doi: 10.1093/cid/ciab127 EDN: XDZEZO
- Jusril H, Rachmi CN, Amin MR, et al. Factors affecting vaccination demand in Indonesia: A secondary analysis and multimethods national assessment. BMJ Open. 2022;12(8):e058570. doi: 10.1136/bmjopen-2021-058570 EDN: UITPKS
- Sinuraya RK, Nuwarda RF, Postma MJ, Suwantika AA. Vaccine hesitancy and equity: Lessons learned from the past and how they affect the COVID-19 countermeasure in Indonesia. Global Health. 2024;20(1):11. doi: 10.1186/s12992-023-00987-w EDN: BUVGMI
Supplementary files
