Current State of Vaccine Prophylaxis and Its Resource Supply in the Post-Pandemic Period: a Review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

At present, the global community views vaccination as the most accessible and economically efficient infection control technology, a pathway to active longevity, and one of the most powerful public health tools with proven epidemiological effectiveness. The National Immunization Schedule (NIS) of the Russian Federation is constantly being improved in response to various challenges and changes in the epidemic situation. In recent years, the list of infections for which vaccines have been included in the NIS has expanded, including for epidemic indications; the vaccination strategy has changed in terms of expanding the indications for vaccination in the populations at risk. However, the existing system of vaccination coverage indicators in target groups does not allow for monitoring the timeliness of vaccination initiation, as it only considers those who have completed the immunization process. Vaccinations outside the target age groups do not ensure protection for infants, who are the most vulnerable to infection, and the catch-up and clean-up vaccination strategies do not quickly correct missed vaccination opportunities within the prescribed timelines, which has led to an unstable situation in recent years regarding several vaccine-preventable infections such as measles, pertussis, and mumps.

It should be noted that during the COVID-19 pandemic, the routine vaccination programs for children suffered significantly. A substantial disruption in immunization of varying degrees occurred in all regions monitored by the World Health Organization (WHO). As early as May 2020, in the first year of the pandemic, the WHO reported that at least 80 million children under the age of one year had missed vital vaccinations. The emerging problems can only be addressed promptly through the use of modern digital technologies, with the development of entirely new qualitative indicators for assessing the vaccination coverage of the pediatric population at all levels of outpatient care (local health districts, outpatient departments, ambulatory care centers) and educational institutions for children.

Lack of information on the timeliness of vaccination initiation in paper reports does not allow for prompt assessment and correction of the situation. The transition to digital technologies in vaccination reporting makes is possible to address these shortcomings in real time and implement corrective actions in a timely manner. Another key area in improving epidemiological surveillance of vaccine-preventable diseases is the assessment of the extent to which disease incidence and transmission rates in a given area depend on preventive vaccination coverage, as well as the monitoring of vaccine composition compatibility with the antigenic profiles of circulating genetic variants of pathogens — activities that require modern resource support.

About the authors

Victoria A. Minaeva

Russian Medical Academy of Continuing Professional Education; Children’s City Polyclinic No. 86

Author for correspondence.
Email: minaevava@zdrav.mos.ru
ORCID iD: 0000-0002-2434-6706
SPIN-code: 5473-5651
Russian Federation, Moscow; Moscow

Alla A. Golubkova

Russian Medical Academy of Continuing Professional Education; Central Research Institute of Epidemiology

Email: allagolubkova@yandex.ru
ORCID iD: 0000-0003-4812-2165
SPIN-code: 6133-2572

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow; Moscow

References

  1. Feldblyum IV. Epidemiologic surveillance over preventive vaccination. Medialʹ. 2014;(3):37–55. EDN: SXHKNX
  2. Brira NI, Feldblum IV. Immunoprophylaxis of infectious diseases in Russia: Condition and perspective of improvement. Epidemiology & Vaccinal prevention. 2017;16(2):4–9. doi: 10.31631/2073-3046-2017-16-2-4-9. EDN: YLERIF
  3. Baranov АA, Briko NI, Vishneva EA, et al. Vaccines and immunoprophylaxis in the modern world. A guide for physicians. Moscow: Pediatr”; 2021. 646 p. (In Russ.)
  4. Feldblium IV. Modern issues of vaccinal prevention. Preventiv and clinical medicine. 2017;(2):20–27. EDN: YQRFMF
  5. Vesikari T, van Damme P. Pediatric vaccines and vaccinations: A European textbook. Springer; 2021. 277 p.
  6. Ferreira C, Doursout MF, Balingit JS. The first 1000 years CE of pandemics: Smallpox and plague. In: 2000 Years of pandemics, past, present, and future. Springer; 2023. P. 1–16. doi: 10.1007/978-3-031-10035-2_1
  7. Hübschen JM, Gouandjika-Vasilache I, Dina J. Measles. Lancet. 2022;399(10325):678–690. doi: 10.1016/s0140-6736(21)02004-3
  8. Shamsheva OV. National calendar of preventive vaccinations implementation ways. Pediatriya. Zhurnal imeni G.N. Speranskogo. 2016;95(2):83–90. EDN: VOXDXF
  9. Golubkova AA, Platonova TA, Kharitonov AN, et al. Measles. Characteristics of the epidemic process and its determinant in real-time conditions (on the example of a measles outbreak in yekaterinburg in 2016). Epidemiology & Vaccinal prevention. 2017;16(6):54–58. doi: 10.31631/2073-3046-2017-16-6-54-58 EDN: ZXRCMZ
  10. Tsvirkun OV. The epidemic process of measles during different periods of vaccine prophylaxis [dissertation abstract]. Moscow; 2014. 46 р. (In Russ.) EDN: ZPLWVF Available from: https://www.prlib.ru/item/1302172 Accessed: Jan 13, 2025.
  11. Golubkova A, Platonova T, Olshvang O, et al. Measles: Manifestations at the stage of elimination of infection and directions for effective management of the epidemic process. Med Surg J. 2018;122(1):146–152.
  12. Briko NI, Brazhnikov AYu, Antipov MO, et al. Epidemiology. Briko NI, editor. Moscow: GEOTAR-Media; 2023. 648 р. (In Russ.)
  13. Romanenko VV. Immunoprophylaxis of infectious diseases in the system of child population health management in the subject of the Russian Federation [dissertation abstract]. Ekaterinburg; 2012. (In Russ.) EDN: QIEGYL Available from: https://medical-diss.com/docreader/355949/d?#?page = 1 Accessed: Jan 13, 2025.
  14. Tatochenko ВK, Ozeretskovsky NA, Fedorov AM. Immunoprophylaxis 2014: A handbook. 12th ed. Moscow: Pediatr”; 2014. 280 р. (In Russ.) EDN: ZVCUNX
  15. Ermolenko KD, Kharit SM, Ruleva AA, Drozdova LYu. Establishing a dialogue with a patient on vaccination (scientific review). Epidemiology & Vaccinal prevention. 2021;20(1):114–124. doi: 10.31631/2073-3046-2021-20-1-114-124 EDN: DKFMYT
  16. Dmitrieva OA, Mironova OIu, Fomin VV. Influenza vaccination and prognosis for patients with high cardiovascular risk. Therapeutic archive. 2021;93(9):1100−1105. doi: 10.26442/00403660.2021.09.201023 EDN: POKNTK
  17. Semenov BF, Zverev VV, Khaitov RM. Prospects for development of immunoprophylaxis up to 2020-2030. Journal of microbiology, epidemiology and immunobiology. 2010;(2):105–111. EDN: RURIJX
  18. Izurieta P, Bahety P, Adegbola R, et al. Public health impact of pneumococcal conjugate vaccine infant immunization programs: Assessment of invasive pneumococcal disease burden and serotype distribution. Expert Rev Vaccines. 2018;17(6):479–493. doi: 10.1080/14760584.2018.1413354
  19. Baranov AA, Namazova-Baranova LS, Tatochenko VK, et al. Vaccinal prevention of the diseases caused by human papillomavirus: Evidence-based medicine. Review of clinical guidelines. Current Pediatrics. 2017;16(2):107–117. doi: 10.15690/vsp.v16i2.1711 EDN: YRGVQZ
  20. Crowe E, Pandeya N, Brotherton JM, et al. Effectiveness of quadrivalent human papillomavirus vaccine for the prevention of cervical abnormalities: Case-control study nested within a population based screening programme in Australia. BMJ. 2014;348:g1458. doi: 10.1136/bmj.g1458
  21. Leval A, Herweijer E, Ploner A, et al. Quadrivalent human papillomavirus vaccine effectiveness: A Swedish national cohort study. J Natl Cancer Inst. 2013;105(7):469–474. doi: 10.1093/jnci/djt032
  22. Namazova-Baranova LS, Fedoseenko MV, Baranov AA. New horizons of national immunization calendar. Current Pediatrics. 2019;18(1):13–30. doi: 10.15690/vsp.v18i1.1988 EDN: VYDXIL
  23. Okwo-Bele JM, Cherian T. The expanded programme on immunization: A lasting legacy of smallpox eradication. Vaccine. 2011;29(Suppl 4):D74–D79. doi: 10.1016/j.vaccine.2012.01.080
  24. Filippov OV, Bolshakova LN, Elagina TN, et al. Regional schedule of vaccination in Moscow: History, development, prospects. Epidemiology & Vaccinal prevention. 2020;19(4):63–75. doi: 10.31631/2073-3046-2020-19-4-63-75 EDN: EZULPK
  25. Gorelov AV, Usenko DV. Rotavirus infection in children. Current Pediatrics. 2008;7(6):78–84. EDN: KXFTHF
  26. Tkhakushinova PKh. Rotaviral infection in children. Epidemiology and Infectious Diseases. 2012;(2):56–59. doi: 10.17816/EID40675 EDN: PFRGLP
  27. On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2022: State report. Moscow: Federal Service for Supervision of Consumer Rights Protection and Human Welfare; 2023. 368 р. (In Russ.)
  28. Marin M, Marti M, Kambhampati A, et al. Global varicella vaccine effectiveness: A meta-analysis. Pediatrics. 2016;137(3):e20153741. doi: 10.1542/peds.2015-3741 EDN: WTTVRL
  29. Harder T, Siedler A. Systematic review and meta-analysis of chickenpox vaccination and risk of Herpes zoster: A quantitative view on the “exogenous boosting hypothesis”. Clin Infect Dis. 2019;69(8):1329–1338. doi: 10.1093/cid/ciy1099
  30. On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2018: State report. Moscow: Federal Service for Supervision of Consumer Rights Protection and Human Welfare; 2019. 254 р. (In Russ.)
  31. On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2019: State report. Moscow: Federal Service for Supervision of Consumer Rights Protection and Human Welfare; 2020. 247 р. (In Russ.)
  32. Romanenko VV, Kosova AA, Smirnova SS, et al. Organisation of the system of immunoprophylaxis of infectious diseases in the Sverdlovsk region: Textbook. Ekaterinburg: Ural State Medical University; 2023. 174 р. (In Russ.)
  33. Vlasov VA. Clinical and immunological features of pertussis in vaccinated and unvaccinated children [dissertation abstract]. Sverdlovsk; 1989. 25 р. (In Russ.) Available from: https://search.rsl.ru/ru/record/01000040289?ysclid = m83k4yrc5e140345423 Accessed: Jan 13, 2025.
  34. Gracheva NM, Devyatkin AV, Petrova MS, et al. Whooping cough (clinic, diagnosis, treatment). Poliklinika. 2016;(2-1):13–25. (In Russ.) EDN: WBFETN
  35. Chernova TM, Timchenko VN, Pedash AI, et al. Assessment of the timeliness of vaccination against pertussis in children of the first year of life and the reasons for the violation of the vaccination schedule. Jurnal infektologii. 2021;13(2):79–86. doi: 10.22625/2072-6732-2021-13-2-79-86 EDN: ZKITDO
  36. Chernova TM, Timchenko VN, Myskina NA, et al. Causes of violation of vaccination schedule in young children. Pediatrician. 2019;10(3):31–36. doi: 10.17816/PED10331-36 EDN: FACWBW
  37. Khodkevich PE, Kulikova KV, Deev IA, et al. Vaccination of premature newborns: Real clinical practice. Infectious diseases. 2022;20(3):50–58. doi: 10.20953/1729-9225-2022-3-50-58 EDN: SDYPZR
  38. Galitskaya MG, Lebedeva AM, Tkachenko NE, Makarova SG. Adherence to vaccination: Main trends in modern society. Russian pediatric journal. 2022;25(4):253. doi: 10.46563/1560-9561-2022-25-4-242-292 EDN: IPTCGO
  39. Aksenova VA. Russian and international approaches to vaccination against pneumococcal infection in children and adults at risk: Resolution of Expert Forum. Russian pulmonology. 2015;25(5):633–637. doi: 10.18093/0869-0189-2015-25-5-633-637 EDN: VEDQAZ
  40. Polunina NV, Pivovarov YuP, Milushkina OYu. Preventive medicine is a cornerstone of health promotion. Bulletin of Russian state medical university. 2018;(5):5–13. doi: 10.24075/brsmu.2018.058 EDN: VRCFBT
  41. Ruban AP. Catchup vaccination when a child’s immunization schedule is disrupted during the COVID-19 pandemic. Medical news. 2022;(4):20–30. EDN: QCTEFE
  42. Causey K, Fullman N, Sorensen RJ, et al. Estimating global and regional disruptions to routine childhood vaccine coverage during the COVID-19 pandemic in 2020: A modelling study. Lancet. 2021;398(10299):522–534. doi: 10.1016/S0140-6736(21)01337-4 EDN: FZBHQO
  43. Shet A, Carr K, Danovaro-Holliday MC, et al. Impact of the SARS-CoV-2 pandemic on routine immunisation services: Evidence of disruption and recovery from 170 countries and territories. Lancet Global Health. 2022;10(2):e186–e194. doi: 10.1016/s2214-109x(21)00512-x EDN: LEENFT
  44. Din M, Asghar M, Ali M. Delays in polio vaccination programs due to COVID-19 in Pakistan: A major threat to Pakistan’s long war against polio virus. Public Health. 2020;189:1–2. doi: 10.1016/j.puhe.2020.09.004 EDN: RFZMPL
  45. Aburish EY, Bustanji Y, Abusal K. Nationwide routine childhood vaccination coverage during the COVID-19 pandemic in Jordan: Current situation, reasons, and predictors of vaccination. Int J Clin Pract. 2022;2022:7918604. doi: 10.1155/2022/7918604 EDN: BHTUYW
  46. Zhong Y, Clapham HE, Aishworiya R, et al. Childhood vaccinations: Hidden impact of COVID-19 on children in Singapore. Vaccine. 2021;39(5):780–785. doi: 10.1016/j.vaccine.2020.12.054 EDN: MGWMIY
  47. Kang G. The SARS-CoV2 pandemic and routine immunisation. Lancet Global Health. 2022;10(2):e155–e156. doi: 10.1016/s2214-109x(21)00543-x EDN: IQPLPK
  48. Patel MK, Goodson JL, Alexander JP Jr, et al. Progress toward regional measles elimination: Worldwide, 2000–2019. MMWR Morb Mortal Wkly Rep. 2020;69(45):1700–1705. doi: 10.15585/mmwr.mm6945a6 EDN: PZSNSG
  49. Abbas KM, Brady OJ, Larson HJ, et al. Mapping routine measles vaccination in low-and middle-income countries. Nature. 2021;589(7842):415–419. doi: 10.1038/s41586-020-03043-4 EDN: ANEZGW
  50. Feldman AG, O’Leary ST, Danziger-Isakov L. The risk of resurgence in vaccine-preventable infections due to coronavirus disease 2019: Related gaps in immunization. Clin Infect Dis. 2021;73(10):1920–1923. doi: 10.1093/cid/ciab127 EDN: XDZEZO
  51. Jusril H, Rachmi CN, Amin MR, et al. Factors affecting vaccination demand in Indonesia: A secondary analysis and multimethods national assessment. BMJ Open. 2022;12(8):e058570. doi: 10.1136/bmjopen-2021-058570 EDN: UITPKS
  52. Sinuraya RK, Nuwarda RF, Postma MJ, Suwantika AA. Vaccine hesitancy and equity: Lessons learned from the past and how they affect the COVID-19 countermeasure in Indonesia. Global Health. 2024;20(1):11. doi: 10.1186/s12992-023-00987-w EDN: BUVGMI

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».