Aerosol Disinfection in the System of Preventive and Anti-Epidemic Measures: a Review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Organization and implementation of disinfection measures are among the most effective strategies of non-specific prevention of infectious diseases. Aerosol disinfection has now gained widespread use due to its practicality and efficacy.

A literature search was carried out using such keywords as aerosol disinfection, prevention, anti-epidemic measures, and ventilation in both Russian and English, across the Scientific Electronic Library, eLIBRARY.RU search engine, and Google Scholar. For English-language publications, searches were conducted in PubMed, the National Center for Biotechnology Information (NCBI) database, and Google Patents (Patents.google.com). The search covered a time period of 84 years (1940–2024). A total of 1,751 articles were identified, of which 55 met the selection criteria.

Analysis of the literature revealed that aerosol disinfection, now widespread in many countries and various fields of activity, has a long-standing history dating back to the late 18th century. Aerosol disinfection technologies have become indispensable in the modern world, although issues related to the bactericidal properties of dispersed systems, optimization of disinfection equipment, and the development of quality standards for effective disinfection remain unresolved.

Aerosol disinfection holds a valuable place within the system of preventive and anti-epidemic measures, having a significant impact on reducing the risk of epidemic outbreaks of infectious diseases with various mechanisms of transmission.

About the authors

Svetlana S. Smirnova

Virome Federal Scientific Research Institute of Viral Infections; Ural State Medical University

Author for correspondence.
Email: smirnova_ss@niivirom.ru
ORCID iD: 0000-0002-9749-4611
SPIN-code: 3127-4296

MD, Cand. Sci. (Medicine)

Russian Federation, Ekaterinburg; Ekaterinburg

Anastasia A. Kameneva

Virome Federal Scientific Research Institute of Viral Infections

Email: kameneva_aa@niivirom.ru
ORCID iD: 0009-0006-2386-8939
SPIN-code: 7699-6092
Russian Federation, Ekaterinburg

Nikolay N. Zhuykov

Virome Federal Scientific Research Institute of Viral Infections

Email: zhuykov_nn@niivirom.ru
ORCID iD: 0000-0002-7018-7582
SPIN-code: 2218-5795
Russian Federation, Ekaterinburg

Yulia S. Stagilskaya

Virome Federal Scientific Research Institute of Viral Infections

Email: stagilskaya_ys@niivirom.ru
ORCID iD: 0009-0000-9261-5624
SPIN-code: 2923-4892
Russian Federation, Ekaterinburg

Ivan A. Egorov

Virome Federal Scientific Research Institute of Viral Infections

Email: egorov_ia@niivirom.ru
ORCID iD: 0000-0002-7153-2827
SPIN-code: 6465-0182
Russian Federation, Ekaterinburg

Avdyunin D. Avdyunin

Virome Federal Scientific Research Institute of Viral Infections

Email: avdyunin_dd@niivirom.ru
ORCID iD: 0009-0005-3660-2251
SPIN-code: 2299-4143
Russian Federation, Ekaterinburg

References

  1. Jones IA, Joshi LT. Biocide use in the antimicrobial era: A review. Molecules. 2021;26(8):2276. doi: 10.3390/molecules26082276 EDN: RVXVGT
  2. Kunduru KR, Kutner N, Nassar-Marjiya E, et al. Disinfectants role in the prevention of spreading the COVID-19 and other infectious diseases: The need for functional polymers! Polym Adv Technol. 2022;33(11):3853–3861. doi: 10.1002/pat.5689
  3. Qiu G, Zhang X, deMello AJ, et al. On-site airborne pathogen detection for infection risk mitigation. Chem Soc Rev. 2023;52(24):8531–8579. doi: 10.1039/d3cs00417a EDN: TZQHOT
  4. Patent RUS № 2218183 C2/2003.12.10. Maleev BV, Zaitsev YN. Method of aerosol disinfection of enclosed spaces, including the air environment and objects, as well as animals, birds, plants and humans in these spaces, using electrochemically activated solutions (garden). (In Russ.) Available from: https://yandex.ru/patents/doc/RU2218183C2_20031210?ysclid = m8yg0nqqj5125554159 Accessed: Nov 15, 2024.
  5. Blazejewski C, Wallet F, Rouzé A, et al. Efficiency of hydrogen peroxide in improving disinfection of ICU rooms. Crit Care. 2015;19(1):30. doi: 10.1186/s13054-015-0752-9 EDN: GMBIPR
  6. Morozov AM, Sergeev AN, Kadykov VA, et al. About the history of the antiseptic’s development as the beginning of modern surgery. Sovremennye problemy nauki i obrazovaniya. 2020;(3):140. doi: 10.17513/spno.29706 EDN: IEEOMP
  7. Lane HJ, Blum N, Fee E, et al. Oliver wendell holmes (1809-1894) and Ignaz philipp semmelweis (1818-1865): Preventing the transmission of puerperal fever. Am J Public Health. 2010;100(6):1008–1009. doi: 10.2105/AJPH.2009.185363
  8. Morozov AM, Sergeev AN, Sergeev NA, et al. Modern methods of stimulating the process of regeneration of postoperative wounds. Siberian Med Rev. 2020;3(123):54–60. doi: 10.20333/2500136-2020-3-54-60 EDN: WHYDTP (In Russ.)
  9. Worboys M. Joseph Lister and the performance of antiseptic surgery. Notes Rec R Soc Lond. 2013;67(3):199–209. doi: 10.1098/rsnr.2013.0028
  10. Pirogovskaya MM. The vetlyanka plague of 1878-1879: Sanitary discourse, sanitary strategy and the (re-)making of sensibility. Antropologicheskij forum. 2012;17:198–229. EDN: NUTHKX
  11. Beresnev SA, Gryazin VI. Physics of atmospheric aerosols: A course of lectures. Ekaterinburg: Ural University Publishing House; 2008. 227 p. (Series: Ecology and Nature Management). (In Russ.)
  12. Goodhue LD, Sullivan WN, inventors; Current Assignee Claude R Wickard. Dispensing apparatu. United States patent US 2,331,117 (Serial No. 413,474). 1941 Oct 3.
  13. Puck TT. The mechanism of aerial disinfection by glycols and other chemical agents: I. Demonstration that the germicidal action occurs through the agency of the vapor phase. J Exp Med. 1947;85(6):729–739. doi: 10.1084/jem.85.6.729
  14. Twort CC, Baker AH, Finn SR, et al. The disinfection of closed atmospheres with germicidal aerosols. J Hyg (Lond). 1940;40(3):253–344. doi: 10.1017/s0022172400027820
  15. Patent RUS № 101146 A1/1955.01.01. Dumsky VF, Evalenko RV, Ivanova ZV, et al. Method of aerosol treatment of closed rooms and agricultural plants. (In Russ.) Available from: https://yandex.ru/patents/doc/SU101146A1_19550101?ysclid = m8yiv7molc206625364 Accessed: Nov 15, 2024.
  16. Patent RUS № 111191 A1/1957.01.01. Yarnych VS. Agent for aerosol disinfection and disinfestation of premises. (In Russ.) Available from: https://yandex.ru/patents/doc/SU111191A1_19570101 Accessed: Nov 15, 2024.
  17. Patent RUS № 119971 A1/1959.01.01. Patz SI. Combination atomiser for disinfectant solutions, suspensions and other liquids. (In Russ.) Available from: https://yandex.ru/patents/doc/SU119971A1_19590101 Accessed: Nov 15, 2024.
  18. Jensen JA, Pearce GW, Quarterman KD. Insecticidal vapours for aircraft disinsection. Bull World Health Organ. 1961;24:611–616.
  19. Schoof HF, Jensen JA, Porter JE, et al. Disinsection of aircraft with a mechanical dispenser of DDVP vapour. Bull World Health Organ. 1961;24:623–628.
  20. Prokopenko AA, Wanner NE, Kushch IV, et al. Disinfection technology of veterinary and sanitary objects by directed aerosols of anolyte perox. Problems on veterinary sanitation, hygiene and ecology. 2020;3:322–327. doi: 10.36871/vet.san.hyg.ecol.202003006 EDN: DYBEZP
  21. Andersen BM, Rasch M, Hochlin K, et al. Decontamination of rooms, medical equipment and ambulances using an aerosol of hydrogen peroxide disinfectant. J Hosp Infect. 2006;62(2):149–155. doi: 10.1016/j.jhin.2005.07.020
  22. Callahan KL, Beck NK, Duffield EA, et al. Inactivation of methicillin-resistant staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus faecium (VRE) on various environmental surfaces by mist application of a stabilized chlorine dioxide and quaternary ammonium compound-based disinfectant. J Occup Environ Hyg. 2010;7(9):529–534. doi: 10.1080/15459624.2010.487806
  23. Choi H, Chatterjee P, Lichtfouse E, et al. Classical and alternative disinfection strategies to control the COVID-19 virus in healthcare facilities: A review. Environmental Chemistry Letter. 2021;19(3):1945–1951. doi: 10.1007/s10311-021-01180-4 EDN: YEPKIQ
  24. Ochowiak M, Krupińska A, Włodarczak S, et al. Analysis of the possibility of disinfecting surfaces using portable foggers in the era of the SARS-CoV-2 epidemic. Energies. 2021;14(7):2019. doi: 10.3390/EN14072019 EDN: FUWSIF
  25. Tuleshov A, Khabiev A, Rakhmatulina A, et al. Practical application of the new disinfection robot in the fight against viral infections. Bulletin of Kazakh Academy of Transport and Communications named after M. Tynyshpayev. 2023;124(1);264–273. doi: 10.52167/1609-1817-2023-124-1-264-273 EDN: YENSOO
  26. Patent RUS № 2481160 C1/2013.05.10. Khmelev VN, Shalunov AV, Henne DV, et al. Ultrasonic atomiser. (In Russ.) Available from: https://yandex.ru/patents/doc/RU2481160C1_20130510 Accessed: Nov 15, 2024.
  27. Patent RUS № 206843 U1/2021.09.29. Trubitsyn AA, Trubitsyna DA, Khristoforov AA. Device for aerosol disinfection of closed rooms. (In Russ.) Available from: https://yandex.ru/patents/doc/RU206843U1_20210929 Accessed: Nov 15, 2024.
  28. Patent RUS № 200217 U1/2020.10.13. Pyt’ko NS. Autonomous automatic device for disinfection of surfaces. (In Russ.) Available from: https://yandex.ru/patents/doc/RU200217U1_20201013 Accessed: Nov 15, 2024.
  29. Patent RUS № 2731265 C1/2020.09.01. Alimov AV, Zhuykov NN, Rupysheva TA. Aerosol method of disinfection of ventilation systems. (In Russ.) Available from: https://yandex.ru/patents/doc/RU2731265C1_20200901 Accessed: Nov 15, 2024.
  30. Liljedahl LA, Retzer HJ, Sullivan WN, et al. Aircraft disinfection: The physical and insecticidal characteristics of (+)-phenothrin applied by aerosol at “blocks away”. Bull World Health Organ. 1976;54(4):391–396.
  31. Yao Z, Ma N, Chen Y. An autonomous mobile combination disinfection system. Sensors (Basel). 2023;24(1):53. doi: 10.3390/s24010053 EDN: JWWGOS
  32. Patterson G, Morley PS, Blehm KD, et al. Efficacy of directed misting application of a peroxygen disinfectant for environmental decontamination of a veterinary hospital. J Am Vet Med Assoc. 2005;227(4):597–602. doi: 10.2460/javma.2005.227.597
  33. Amodio E, Kuster SP, Garzoni C, et al. Disinfecting noncritical medical equipment-Effectiveness of hydrogen peroxide dry mist as an adjunctive method. Am J Inf Control. 2020;48(8):897–902. doi: 10.1016/j.ajic.2020.05.016 EDN: DSTJCW
  34. Artemov AN, Balabaev GA, Vorobiev AI, et al. Organization of stage medical care to patients with suspected and confirmed new coronavirus infection Covid-19 in the Voronezh region. Disaster Med. 2021;(2):46–49. doi: 10.33266/2070-1004-2021-2-46-49 EDN: UHJTEL
  35. Arunwuttipong A, Jangtawee P, Vchirawongkwin V, et al. Public buses decontamination by automated hydrogen peroxide aerosolization system. Open Access Maced J Med Sci. 2021;9(E):847–856. doi: 10.3889/oamjms.2021.6828 EDN: EKKHWN
  36. Wood JP, Magnuson М, Touati А, et al. Evaluation of electrostatic sprayers and foggers for the application of disinfectants in the era of SARS-CoV-2. PLoS One. 2021;16(9):e0257434. doi: 10.1371/journal.pone.0257434 EDN: TPFBYR
  37. Estienney M, Daval-Frerot P, Aho-Glélé LS, et al. Use of a hydrogen peroxide nebulizer for viral disinfection of emergency ambulance and hospital waiting room. Food Environ Virol. 2022;14(2):217–221. doi: 10.1007/s12560-022-09519-y EDN: KQRJBJ
  38. Shestopalov NV, Skopin AY, Fedorova LS, et al. Developing methodical approaches to managing risks of airborne infections with aerosol contagion. Health Risk Analysis. 2019;(1):84–92. doi: 10.21668/health.risk/2019.1.09 EDN: THVPAQ
  39. Khovzun TV, Lobanov YV, Shah AV, et al. Domestic generator of “cold fog” aerosols for disinfection with highly dispersed aerosols at food industry enterprises. Aktual’nye voprosy pererabotki myasnogo i molochnogo syr’ya. 2008;(3):273–281. (In Russ.)
  40. Fokin AI, Petrova AA. The development of new effective protocols of air disinfection in poultry houses with gaseous iodine. Ptitsevodstvo. 2019;(6):56–60. doi: 10.33845/0033-3239-2019-68-6-56-60 EDN: WCNAAE
  41. Chezganova EA, Efimova OS, Sozinov SA, et al. Particulate matter in a hospital environment: as potential reservoir for hospital strains. Epidemiology & Vaccinal prevention. 2019;18(4):82–92. doi: 10.31631/2073-3046-2019-18-4-82-92 EDN: NNOSHO
  42. Krasochko PA, Gotovsky DG, Bublov AV, et al. Disinfection: Educational and methodological manual. Vitebsk; 2020. 84 р. (In Russ.) EDN: VBASQT
  43. Patent RUS № 2379058 C1/2010.01.20. Sventitsky EN, Glushenko VM, Tolparov UN et al. Method of aerosol disinfection of closed rooms. (In Russ.) Available from: https://yandex.ru/patents/doc/RU2379058C1_20100120 Accessed: Nov 15, 2024.
  44. Sventitsky EN, Chernyaeva EV, Egorova TS, et al. Disinfection of enclosed facilities with aerosol of electrochemically activated solution. Extreme Med. 2011;4(38):85–90. EDN: TJHVUD
  45. Patent RUS № 789118 A1/1980.12.23. Kitaev AV, Yarnykh VS, Kelbikhanov NM, Gusev VN. Method of air disinfection. (In Russ.) Available from: https://yandex.ru/patents/doc/SU789118A1_19801223 Accessed: Nov 15, 2024.
  46. Vysotsky AE, Fomchenko IV, Verbitsky AA. Aerosol disinfection of livestock buildings with Sandim-D preparation. Vitebskaya gosudarstvennaya ordena Znak Pocheta veterinarnaya akademiya. 2005;41(2-1):16–17. EDN: VCLIXT
  47. Prozorkina NV, Rubashkina LA. Fundamentals of microbiology, virology and immunology: textbook for secondary specialized medical educational institutions. Rostov-on-Don: Feniks; 2012. 378 р. (In Russ.)
  48. Schinköthe J, Scheinemann HA, Diederich S, et al. Airborne disinfection by dry fogging efficiently inactivates severe acute respiratory Syndrome Coronavirus 2 (SARS-CoV-2), mycobacteria, and bacterial spores and shows limitations of commercial spore carriers. Appl Environ Microbiol. 2021;87(3):e02019-20. doi: 10.1128/AEM.02019-20
  49. Sachkova OS, Koroleva AM. Domestic and foreign experience in application of equipment and methods of air disinfection in public transport. Security Problems of the Russian Society. 2021;(1):24–33. EDN: INTKQP
  50. Kuznetsov VV, Belyakov PE, Sharov SA, et al. Modern high-performance methods for special processing of arms, military and special equipment. J NBC Protection Corps. 2022;6(3):271–281. doi: 10.35825/2587-5728-2022-6-3-271-281 EDN: ODTSIN
  51. Sanguinet J, Edmiston C. Evaluation of dry hydrogen peroxide in reducing microbial bioburden in a healthcare facility. Am J Infect Control. 2021;49(8):985–990. doi: 10.1016/j.ajic.2021.03.004 EDN: SKGMNI
  52. Totaro M, Costa AL, Casini B, et al. Microbiological air quality in heating, ventilation and air conditioning systems of surgical and intensive care areas: The application of a disinfection procedure for dehumidification devices. Pathogens. 2019;15,8(1):8. doi: 10.3390/pathogens8010008
  53. Ivanov BG, Ziganshin BG, Rudakov AI, et al. Assessment of distribution of disinfecting liquid drops on the surface processed. Vestnik of Kazan State Agrarian University. 2019;14(3):103–107. doi: 10.12737/article_5db969d80165a4.44685655 EDN: HNUTDX

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».