Complete blood count as a tool for risk stratification in COVID-19

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The causative agent of coronavirus disease (COVID-19) continues to circulate in the population and causes severe cases. A favorable outcome depends on timely assessment of disease severity in the early stages, prompt hospitalization, and appropriate therapeutic adjustments. The complete blood count, performed during initial diagnostics, has proven to be one of the most important tools for assessing disease severity.

AIM: The study aimed to evaluate quantitative and calculated complete blood count parameters depending on disease severity at hospital admission and over time, and to identify predictors of adverse outcomes.

METHODS: A retrospective analysis was conducted of medical records from 122 patients admitted between March and July 2021 to the N. V. Sklifosovsky Research Institute for Emergency Medicine with confirmed COVID-19 (severe course) within 3 days of symptom onset. Based on outcomes, all patients were divided into 2 groups: group 1, survivors; and group 2, deceased. All patients underwent venous blood sampling at admission and on day 7 of hospitalization, with analysis performed using the ADVIA 2120i hematology analyzer. Additionally, the neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and systemic inflammation index were calculated. Quantitative and calculated complete blood count parameters were assessed relative to reference values and compared between groups over time. Statistical analysis was performed using SPSS 20.0 and MedCalc 11.5.00.

RESULTS: Compared with group 1, patients in group 2 had higher absolute leukocyte and neutrophil counts and lower lymphocyte and eosinophil counts at all time points. Platelet count showed divergent trend: in group 1, there was a tendency toward an increase by day 7, whereas group 2 demonstrated a consistent decrease. Erythrocyte sedimentation rates were comparable between the groups in the early stages of the disease, but by day 7, a marked increase and a decrease were observed in group 2 and in group 1, respectively. The most informative parameters were the neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and systemic inflammation index, which showed statistically significant intergroup differences and were consistently higher in group 2 at all time points.

CONCLUSION: Lymphocyte count and neutrophil-to-lymphocyte ratio are early sensitive bioindicators that reflect disease severity, treatment effectiveness, and prognosis in COVID-19.

About the authors

Victoria B. Poluektova

Sechenov First Moscow State Medical University (Sechenov University); Sklifosovsky Research Institute for Emergency Medicine

Author for correspondence.
Email: viktoriya211@mail.ru
ORCID iD: 0000-0002-5053-0312
SPIN-code: 7290-8377

MD, Cand. Sci. (Medicine)

Russian Federation, 8 Trubetskaya st, bldg 2, Moscow, 119992; Moscow

Sergey S. Petrikov

Sklifosovsky Research Institute for Emergency Medicine

Email: petrikovss@sklif.mos.ru
ORCID iD: 0000-0003-3292-8789

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Moscow

Elena V. Klychnikova

Sklifosovsky Research Institute for Emergency Medicine

Email: klychnikovaev@mail.ru
ORCID iD: 0000-0002-3349-0451
SPIN-code: 6311-6795

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Maria V. Sankova

Sechenov First Moscow State Medical University (Sechenov University)

Email: cankov@yandex.ru
ORCID iD: 0000-0003-3164-9737
SPIN-code: 2212-5646

MD

Russian Federation, Moscow

Svetlana N. Larina

Sechenov First Moscow State Medical University (Sechenov University)

Email: snlarina07@yandex.ru
ORCID iD: 0000-0003-0188-543X
SPIN-code: 2906-0605

Cand. Sci. (Biology)

Russian Federation, Moscow

Elizaveta V. Tazina

Sklifosovsky Research Institute for Emergency Medicine

Email: ltazina@yandex.ru
ORCID iD: 0000-0001-6079-1228
SPIN-code: 1994-3086

Cand. Sci. (Pharmacy)

Russian Federation, Moscow

Elena V. Volchkova

Sechenov First Moscow State Medical University (Sechenov University)

Email: antononina@rambler.ru
ORCID iD: 0000-0003-4581-4510
SPIN-code: 3342-4681

Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

References

  1. Saberiyan M, Karimi E, Khademi Z, et al. SARS-CoV-2: phenotype, genotype, and characterization of different variants. Cellular & Molecular Biology Letters. 2022;27(1):50. doi: 10.1186/s11658-022-00352-6 EDN: VHOFDL
  2. Li X, Xu S, Yu M, et al. Risk Factors for Severity and Mortality in Adult COVID-19 Inpatients in Wuhan. Journal of Allergy and Clinical Immunology. 2020;146(1):110–118. doi: 10.1016/j.jaci.2020.04.006 EDN: CPXGAJ
  3. McElvaney OJ, McEvoy NL, McElvaney OF, et al. Characterization of the Inflammatory Response to Severe COVID-19 Illness. American Journal of Respiratory and Critical Care Medicine. 2020;202(6):812–821. doi: 10.1164/rccm.202005-1583oc EDN: FHJEYF
  4. Avdeev SN, Adamjan LV, Alekseeva EI, et al. Prevention, diagnosis and treatment of the new coronavirus infection (COVID-19): temporary guidelines. Version 18 (10/26/2023). Moscow: Ministry of Health of the Russian Federation; 2023. (In Russ.) EDN: PDXQNY
  5. Yang X, Yu Y, Xu J, et al. Clinical Course and Outcomes of Critically Ill Patients with SARS-CoV-2 Pneumonia in Wuhan, China: A Single-Centered, Retrospective, Observational Study. The Lancet Respiratory Medicine. 2020;8(5):475–481. doi: 10.1016/s2213-2600(20)30079-5 EDN: TXCPLA
  6. Guan W, Ni Z, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine. 2020;382(18):1708–1720. doi: 10.1056/nejmoa2002032 EDN: NTYDLW
  7. Lippi G, Plebani M. Laboratory Abnormalities in Patients With COVID-2019 Infection. Clinical Chemistry and Laboratory Medicine (CCLM). 2020;58(7):1131–1134. doi: 10.1515/cclm-2020-0198 EDN: BHXGWT
  8. Pereira MAM, Barros ICA, Jacob ALV, et al. Laboratory Findings in SARS-CoV-2 Infections: State of the Art. Revista da Associação Médica Brasileira. 2020;66(8):1152–1156. doi: 10.1590/1806-9282.66.8.1152 EDN: WYTHAS
  9. Asaduzzaman MD, Romel Bhuia M, Nazmul Alam ZHM, et al. Significance of Hemogram-Derived Ratios for Predicting In-Hospital Mortality in COVID-19: A multicenter Study. Health Science Reports. 2022;5(4):e663. doi: 10.1002/hsr2.663
  10. Velazquez S, Madurga R, Castellano JM, et al. Hemogram-Derived Ratios as Prognostic Markers of ICU Admission in COVID-19. BMC Emergency Medicine. 2021;21(1):89. doi: 10.1186/s12873-021-00480-w EDN: OJNBYG
  11. Thomas ETA. Clinical Utility of Blood Cell Histogram Interpretation. Journal of Clinical and Diagnostic Research. 2017;11(9):OE01–OE04. doi: 10.7860/JCDR/2017/28508.10620
  12. Chen G, Wu D, Guo W, et al. Clinical and Immunological Features of severe and Moderate Coronavirus Disease 2019. Journal of Clinical Investigation. 2020;130(5):2620–2629. doi: 10.1172/jci137244 EDN: JDFTCU
  13. Tan L, Wang Q, Zhang D, et al. Lymphopenia Predicts Disease Severity of COVID-19: A Descriptive and Predictive Study. Signal Transduction and Targeted Therapy. 2020;5(1):33. doi: 10.1038/s41392-020-0148-4 EDN: EIGCHZ
  14. Qu R, Ling Y, Zhang Y, et al. Platelet-to-Lymphocyte Ratio is Associated With Prognosis in Patients With Coronavirus Disease-19. Journal of Medical Virology. 2020;92(9):1533–1541. doi: 10.1002/jmv.25767 EDN: AURKOW
  15. Gubenko NS, Budko AA, Plisyuk AG, Orlova IA. Association of General Blood Count Indicators With the Severity of COVID-19 in Hospitalized Patients. South Russian Journal of Therapeutic Practice. 2021;2(1):90–101. doi: 10.21886/2712-8156-2021-2-1-90-101 EDN: IMKGVF
  16. Tsivanyuk MM, Geltser BI, Shakhgeldyan KI, et al. Parameters of Complete Blood Count, Lipid Profile and Their Ratios in Predicting Obstructive Coronary Artery Disease in Patients With Non-ST Elevation Acute Coronary Syndrome. Russian Journal of Cardiology. 2022;27(8):66–74. doi: 10.15829/1560-4071-2022-5079 EDN: ADACCL
  17. Yang YL, Wu CH, Hsu PF, et al. Systemic Immune-Inflammation Index (SII) Predicted Clinical Outcome in Patients With Coronary Artery Disease. European Journal of Clinical Investigation. 2020;50(5):e13230. doi: 10.1111/eci.13230 EDN: HVZZYL
  18. Minzhasova АI. Statistical Analysis of Medical Data. Prikladnaja matematika i fundamental’naja informatika. 2015;(2):193–198. EDN: UXQSVL
  19. Horn PS, Feng L, Li Y, Pesce AJ. Effect of Outliers and Nonhealthy Individuals on Reference Interval Estimation. Clinical Chemistry. 2001;47(12):2137–2145. doi: 10.1093/clinchem/47.12.2137
  20. Moore JB, June CH. Cytokine Release Syndrome in Severe COVID-19. Science. 2020;368(6490):473–474. doi: 10.1126/science.abb8925 EDN: JBGXFT
  21. Tay MZ, Poh CM, Rénia L, et al. The Trinity of COVID-19: Immunity, Inflammation and Intervention. Nature Reviews Immunology. 2020;20(6):363–374. doi: 10.1038/s41577-020-0311-8 EDN: SUJPWA
  22. Fathi N, Rezaei N. Lymphopenia in COVID-19: Therapeutic opportunities. Cell Biology International. 2020;44(9):1792–1797. doi: 10.1002/cbin.11403 EDN: VCHEZA
  23. Zhou F, Yu T, Du R, et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients With COVID-19 in Wuhan, China: A Retrospective Cohort Study. The Lancet. 2020;395(10229):1054–1062. doi: 10.1016/s0140-6736(20)30566-3 EDN: KTMOXN
  24. Sokolov DD, Kagramanyan MA, Kozlov IA. Calculated Hematological Indices as Predictors of Cardiovascular Complications in Noncardiac Surgery (Pilot Study). Messenger of Anesthesiology and Resuscitation. 2022;19(2):14–22. doi: 10.21292/2078-5658-2022-19-2-14-22 EDN: RTNJMF
  25. Evtugina NG, Sannikova SS, Peshkova AD, et al. Quantitative and Qualitative Changes in Blood Cells Associated With COVID-19. Kazan medical journal. 2021;102(2):141–155. doi: 10.17816/KMJ2021-141 EDN: MNNLFA
  26. Lagunas-Rangel FA. Neutrophil-to-Lymphocyte Ratio and Lymphocyte-to-C-Reactive Protein Ratio in Patients With Severe Coronavirus Disease 2019 (COVID-19): A Meta-analysis. Journal of Medical Virology. 2020;92(10):1733–1734. doi: 10.1002/jmv.25819 EDN: QDGRWR
  27. Klypa TV, Bychinin MV, Mandel IA, et al. Clinical Characteristics of Patients Admitted to an ICU with COVID-19. Predictors of the Severe Disease. Journal of Clinical Practice. 2020;11(2):6–20. doi: 10.17816/clinpract34182 EDN: ZWCZKE
  28. Weisel JW, Litvinov RI. Red Blood Cells: the Forgotten Player in Hemostasis and Thrombosis. Journal of Thrombosis and Haemostasis. 2019;17(2):271–282. doi: 10.1111/jth.14360 EDN: UQFDEO
  29. Thachil J, Tang N, Gando S, et al. ISTH Interim Guidance on Recognition and Management of Coagulopathy in COVID-19. Journal of Thrombosis and Haemostasis. 2020;18(5):1023–1026. doi: 10.1111/jth.14810 EDN: OLOAHQ
  30. Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of Thrombotic Complications in Critically Ill ICU Patients With COVID-19. Thrombosis Research. 2020;191:145–147. doi: 10.1016/j.thromres.2020.04.013 EDN: HGYQQO
  31. Roshchina AA, Yupatova MI, Nikitina NM. Markable Coagulopathy in the Patient With Severe COVID-19. South Russian Journal of Therapeutic Practice. 2022;3(3):97–107. doi: 10.21886/2712-8156-2022-3-3-91-96 EDN: WHOVLY
  32. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. New England Journal of Medicine. 2020;383(2):120–128. doi: 10.1056/NEJMoa2015432
  33. Cattaneo M, Bertinato EM, Birocchi S, et al. Pulmonary Embolism or Pulmonary Thrombosis in COVID-19? Is the Recommendation to Use High-Dose Heparin for Thromboprophylaxis Justified? Thrombosis and Haemostasis. 2020;120(08):1230–1232. doi: 10.1055/s-0040-1712097 EDN: WBXORD
  34. Huang C, Wang Y, Li X, et al. Clinical Features of Patients Infected With 2019 Novel Coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497–506. doi: 10.1016/s0140-6736(20)30183-5 EDN: WLIHXH

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Morphology of lymphocytes in patients with severe COVID-19 upon admission. Romanovsky–Giemsa staining, immersion, ×1000: 1 — polymorphic nuclei of irregular round shape; 2 — blue cytoplasm with marginal basophilia.

Download (935KB)
3. Fig. 2. Morphology of neutrophils and erythrocytes in patients with severe COVID-19 upon admission. Romanovsky–Giemsa staining, immersion, ×1000. 1 — hypogranularity of cytoplasm; 2 — pelgerization of neutrophil nuclei; 3 — echinocytes.

Download (827KB)
4. Fig. 3. Hemogram characteristics associated with an increased risk of death in patients with severe COVID-19. ESR — erythrocyte sedimentation rate.

Download (903KB)

Copyright (c) 2025 Eco-vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».