Features of the immune response in early period of ixodid tick-borne borreliosis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Lyme borreliosis is a group of transmissible infectious diseases that are similar in etiology, but diverse in clinical manifestations. The development of Lyme disease symptoms is due not only to the activity of the pathogen itself, but also to the result of its interaction with immune system of macroorganism. The first line of defense, represented by a variety of cellular and humoral components of innate immunity, is most rapidly involved in immune response, and it is it that seeks to limit dissemination of the causative agent from the initial site of infection. However, a wide range of protective surface proteins of Borrelia and a number of other structures aimed at avoiding immune mechanisms prevent the destruction of the pathogen. Not the last place in this dynamic process is occupied by ixodid ticks themselves, since the secret of their salivary glands has an inhibitory effect on a number of cells and complement system. In parallel with innate immunity, adaptive immune response factors are activated, serving as a second line of defense. The synthesis of specific antibodies in the early period of Lyme disease has its own ambiguous features, but this does not exclude their importance in fight against borreliosis infection. To date, the issues of interaction with dendritic cells and cytotoxic T-lymphocytes remain less studied. Research of all aspects, including little-studied ones, is extremely important for both practical healthcare and fundamental medicine.

About the authors

Kirill V. Samoylov

Siberian State Medical University

Email: samoilov.krl@gmail.com
ORCID iD: 0000-0002-8477-8551
SPIN-code: 4710-0894
Scopus Author ID: 58103184700
ResearcherId: HGC-9557-2022

research laboratory assistant of the Department of Infectious Diseases and Epidemiology

Russian Federation, 2 Moskovsky trakt, 634050 Tomsk

Daniil P. Koval

Siberian State Medical University

Email: daniil.vova555@gmail.com
ORCID iD: 0000-0001-9056-9986

6th year student 

Russian Federation, 2 Moskovsky trakt, 634050 Tomsk

Ekaterina N. Ilyinskikh

Siberian State Medical University

Email: infconf2009@mail.ru
ORCID iD: 0000-0001-7646-6905
SPIN-code: 5245-5958
Scopus Author ID: 6602611268

MD, Dr. Sci. (Med.), Associate Professor

Russian Federation, 2 Moskovsky trakt, 634050 Tomsk

Evgenia N. Filatova

Siberian State Medical University

Author for correspondence.
Email: synamber@mail.ru
ORCID iD: 0000-0001-9951-8632
SPIN-code: 8094-3417

MD

Russian Federation, 2 Moskovsky trakt, 634050 Tomsk

References

  1. Cerar T, Strle F, Stupica D, et al. Differences in Genotype, Clinical Features, and Inflammatory Potential of Borrelia burgdorferi sensu stricto Strains from Europe and the United States. Emerg Infect Dis. 2016;22(5):818–827. doi: 10.3201/eid2205.151806
  2. Marques AR, Strle F, Wormser GP. Comparison of Lyme Disease in the United States and Europe. Emerg Infect Dis. 2021;27(8): 2017–2024. doi: 10.3201/eid2708.204763
  3. Rudakova SA, Teslova OE, Kaneshova NE, et al. Genospecies Diversity of Borrelia in Ixodes Ticks of the West Siberia. Problems of Particularly Dangerous Infections. 2019;(4):92–96. (In Russ). doi: 10.21055/0370-1069-2019-4-92-96
  4. Gray JS, Kahl O, Lane RS, Levin ML, Tsao JI. Diapause in ticks of the medically important Ixodes ricinus species complex. Ticks Tick Borne Dis. 2016;7(5):992–1003. doi: 10.1016/j.ttbdis.2016.05.006
  5. Titkov AV, Platonov AE, Stukolova OA, et al. Epidemiological features of ixodes tick-borne borelioses in the krasnoyarsk territory in the context of searching for the cases of infection caused by Borrelia miyamotoi. Journal of Microbiology, Epidemiology and Immunobiology. 2018;(3):10–18 (In Russ). doi: 10.36233/0372-9311-2018-3-10-18
  6. Murzabaeva RT, Sharifullina LD, Abrashina NA, Lukmanova AH. Clinical and immunological characteristics of erythema and non-erythema forms of ixodic tick-borne borreliosis. Bashkortostan Medical Journal. 2021;16(3):21–26. (In Russ).
  7. Stanek G, Wormser GP, Gray J, Strle F. Lyme borreliosis. The Lancet. 2012;379(9814):461–473. doi: 10.1016/S0140-6736(11)60103-7
  8. Trevisan G, Bonin S, Ruscio M. A Practical Approach to the Diagnosis of Lyme Borreliosis: From Clinical Heterogeneity to Laboratory Methods. Front Med. 2020;7:265. doi: 10.3389/fmed.2020.00265
  9. Maksimyan S, Syed MS, Soti V. Post-Treatment Lyme Disease Syndrome: Need for Diagnosis and Treatment. Cureus. 2021; 13(10):e18703. doi: 10.7759/cureus.18703
  10. Sertour N, Cotté V, Garnier M, et al. Infection Kinetics and Tropism of Borrelia burgdorferi sensu lato in Mouse After Natural (via Ticks) or Artificial (Needle) Infection Depends on the Bacterial Strain. Front Microbiol. 2018;9:1722. doi: 10.3389/fmicb.2018.01722
  11. Strobl J, Mündler V, Müller S, et al. Tick feeding modulates the human skin immune landscape to facilitate tick-borne pathogen transmission. J Clin Invest. 2022;132(21):e161188. doi: 10.1172/JCI161188
  12. Tuominen-Gustafsson H, Penttinen M, Hytönen J, Viljanen MK. Use of CFSE staining of borreliae in studies on the interaction between borreliae and human neutrophils. BMC Microbiol. 2006;6:92. doi: 10.1186/1471-2180-6-92
  13. Bernard Q, Smith AA, Yang X, et al. Plasticity in early immune evasion strategies of a bacterial pathogen. Proc Natl Acad Sci U S A. 2018;115(16):E3788–E3797. doi: 10.1073/pnas.1718595115
  14. Muldur S, Ellett F, Marand AL, et al. Microfluidic Assays for Probing Neutrophil-Borrelia Interactions in Blood During Lyme Disease. Cells Tissues Organs. 2022;211(3):313–323. doi: 10.1159/000513118
  15. Rahman S, Shering M, Ogden NH, Lindsay R, Badawi A. Toll-like receptor cascade and gene polymorphism in host-pathogen interaction in Lyme disease. J Inflamm Res. 2016;(9):91–102. doi: 10.2147/JIR.S104790
  16. Hartiala P, Hytönen J, Suhonen J, et al. Borrelia burgdorferi inhibits human neutrophil functions. Microbes Infect. 2008;10(1): 60–68. doi: 10.1016/j.micinf.2007.10.004
  17. Vorobjeva NV, Chernyak BV. NETosis: Molecular Mechanisms, Role in Physiology and Pathology. Biochemistry (Mosc). 2020; 85(10):1178–1190. doi: 10.1134/S0006297920100065
  18. Appelgren D, Enocsson H, Skogman BH, et al. Neutrophil Extracellular Traps (NETs) in the Cerebrospinal Fluid Samples from Children and Adults with Central Nervous System Infections. Cells. 2019;9(1):43. doi: 10.3390/cells9010043
  19. O’Brien XM, Biron BM, Reichner JS. Consequences of extracellular trap formation in sepsis. Curr Opin Hematol. 2017;24(1):66–71. doi: 10.1097/MOH.0000000000000303
  20. Hidano A, Konnai S, Yamada S, et al. Suppressive effects of neutrophil by Salp16-like salivary gland proteins from Ixodes persulcatus Schulze tick. Insect Mol Biol. 2014;23(4):466–474. doi: 10.1111/imb.12101
  21. Beaufays J, Adam B, Menten-Dedoyart C, et al. Ir-LBP, an ixodes ricinus tick salivary LTB4-binding lipocalin, interferes with host neutrophil function. PLoS One. 2008;3(12):e3987. doi: 10.1371/journal.pone.0003987
  22. Menten-Dedoyart C, Faccinetto C, Golovchenko M, et al. Neutrophil extracellular traps entrap and kill Borrelia burgdorferi sensu stricto spirochetes and are not affected by Ixodes ricinus tick saliva. J Immunol. 2012;189(11):5393–5401. doi: 10.4049/jimmunol.1103771
  23. Carreras-González A, Barriales D, Palacios A, et al. Regulation of macrophage activity by surface receptors contained within Borrelia burgdorferi-enriched phagosomal fractions. PLoS Pathog. 2019;15(11):e1008163. doi: 10.1371/journal.ppat.1008163
  24. Sugiyama K, Muroi M, Kinoshita M, et al. NF-κB activation via MyD88-dependent Toll-like receptor signaling is inhibited by trichothecene mycotoxin deoxynivalenol. J Toxicol Sci. 2016;41(2):273–279. doi: 10.2131/jts.41.273
  25. Hawley KL, Olson CM Jr, Iglesias-Pedraz JM, et al. CD14 cooperates with complement receptor 3 to mediate MyD88-independent phagocytosis of Borrelia burgdorferi. Proc Natl Acad Sci U S A. 2012;109(4):1228–1232. doi: 10.1073/pnas.1112078109
  26. Benjamin SJ, Hawley KL, Vera-Licona P, et al. Macrophage mediated recognition and clearance of Borrelia burgdorferi elicits MyD88-dependent and -independent phagosomal signals that contribute to phagocytosis and inflammation. BMC Immunol. 2021;22(1):32. doi: 10.1186/s12865-021-00418-8
  27. Naj X, Linder S. ER-Coordinated Activities of Rab22a and Rab5a Drive Phagosomal Compaction and Intracellular Processing of Borrelia burgdorferi by Macrophages. Cell Rep. 2015;12(11): 1816–1830. doi: 10.1016/j.celrep.2015.08.027
  28. Chung Y, Zhang N, Wooten RM. Borrelia burgdorferi elicited-IL-10 suppresses the production of inflammatory mediators, phagocytosis, and expression of co-stimulatory receptors by murine macrophages and/or dendritic cells [published correction appears in PLoS One. 2014;9(1). doi: 10.1371/annotation/2ce59bc4-fcf0-498f-86f0-376432428bf4] [published correction appears in PLoS One. 2014;9(1). doi: 10.1371/annotation/680090aa-3e1b-4135-94d6-8082c09180d4]. PLoS One. 2013;8(12):e84980. doi: 10.1371/journal.pone.0084980
  29. Sal MS, Li C, Motalab MA, et al. Borrelia burgdorferi uniquely regulates its motility genes and has an intricate flagellar hook-basal body structure. J Bacteriol. 2008;190(6):1912–1921. doi: 10.1128/JB.01421-07
  30. Van den Bos E, Walbaum S, Horsthemke M, Bachg AC, Hanley PJ. Time-lapse Imaging of Mouse Macrophage Chemotaxis. J Vis Exp. 2020;(158):10.3791/60750. doi: 10.3791/60750
  31. Guo Z, Zhao N, Chung TD, et al. Visualization of the Dynamics of Invasion and Intravasation of the Bacterium That Causes Lyme Disease in a Tissue Engineered Dermal Microvessel Model. Adv Sci (Weinh). 2022;9(35):e2204395. doi: 10.1002/advs.202204395
  32. Klose M, Scheungrab M, Luckner M, Wanner G, Linder S. FIB-SEM-based analysis of Borrelia intracellular processing by human macrophages. J Cell Sci. 2021;134(5):jcs252320. doi: 10.1242/jcs.252320
  33. Poole NM, Mamidanna G, Smith RA, Coons LB, Cole JA. Prostaglandin E(2) in tick saliva regulates macrophage cell migration and cytokine profile. Parasit Vectors. 2013;6(1):261. doi: 10.1186/1756-3305-6-261
  34. Hourcade DE, Akk AM, Mitchell LM, et al. Anti-complement activity of the Ixodes scapularis salivary protein Salp20. Mol Immunol. 2016;(69):62–69. doi: 10.1016/j.molimm.2015.11.008
  35. Mason LM, Veerman CC, Geijtenbeek TB, Hovius JW. Ménage à trois: Borrelia, dendritic cells, and tick saliva interactions. Trends Parasitol. 2014;30(2):95–103. doi: 10.1016/j.pt.2013.12.003
  36. Grishchenko EA. Skin dendritic cells. Allergologiâ i immunologiâ v pediatrii. 2016;44(1):20–33. (In Russ). doi: 10.24411/2500-1175-2016-00004
  37. Gutierrez-Hoffmann MG, O’Meally RN, Cole RN, et al. Borrelia burgdorferi-Induced Changes in the Class II Self-Immunopeptidome Displayed on HLA-DR Molecules Expressed by Dendritic Cells. Front Med (Lausanne). 2020;(7):568. doi: 10.3389/fmed.2020.00568
  38. Casasola-LaMacchia A, Ritorto MS, Seward RJ, et al. Human leukocyte antigen class II quantification by targeted mass spectrometry in dendritic-like cell lines and monocyte-derived dendritic cells. Sci Rep. 2021;11(1):1028. doi: 10.1038/s41598-020-77024-y
  39. Mason LMK, Hovius JWR. Investigating Human Dendritic Cell Immune Responses to Borrelia burgdorferi. Methods Mol Biol. 2018;1690:291–299. doi: 10.1007/978-1-4939-7383-5_21
  40. Ghaedi M, Takei F. Innate lymphoid cell development. J Allergy Clin Immunol. 2021;147(5):1549–1560. doi: 10.1016/j.jaci.2021.03.009
  41. Olson CM Jr, Bates TC, Izadi H, et al. Local production of IFN-gamma by invariant NKT cells modulates acute Lyme carditis. J Immunol. 2009;182(6):3728–3734. doi: 10.4049/jimmunol.0804111
  42. Oosting M, Brouwer M, Vrijmoeth HD, et al. Borrelia burgdorferi is strong inducer of IFN-γ production by human primary NK cells. Cytokine. 2022;(155):155895. doi: 10.1016/j.cyto.2022.155895
  43. Van de Schoor FR, Vrijmoeth HD, Brouwer MAE, et al. Borrelia burgdorferi Is a Poor Inducer of Gamma Interferon: Amplification Induced by Interleukin-12. Infect Immun. 2022;90(3):e0055821. doi: 10.1128/iai.00558-21
  44. Zhi H, Xie J, Skare JT. The Classical Complement Pathway Is Required to Control Borrelia burgdorferi Levels During Experimental Infection. Front Immunol. 2018;9:959. doi: 10.3389/fimmu.2018.00959
  45. Garcia BL, Zhi H, Wager B, Höök M, Skare JT. Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex. PLoS Pathog. 2016;12(1):e1005404. doi: 10.1371/journal.ppat.1005404
  46. Shakhidzhanov SS, Filippova AE, Butilin AA, Ataullakhanov FI. A modern view on the complement system. Pediatric Hematology/Oncology and Immunopathology. 2019;18(3):130–144. (In Russ). doi: 10.24287/1726-1708-2019-18-3-130-144
  47. Wagemakers A, Coumou J, Schuijt TJ, et al. An Ixodes ricinus Tick Salivary Lectin Pathway Inhibitor Protects Borrelia burgdorferi sensu lato from Human Complement. Vector Borne Zoonotic Dis. 2016;16(4):223–228. doi: 10.1089/vbz.2015.1901
  48. Caine JA, Lin YP, Kessler JR, et al. Borrelia burgdorferi outer surface protein C (OspC) binds complement component C4b and confers bloodstream survival [published correction appears in Cell Microbiol. 2021;23(1)]. Cell Microbiol. 2017;19(12): e12786. doi: 10.1111/cmi.12786
  49. Sajanti EM, Gröndahl-Yli-Hannuksela K, Kauko T, He Q, Hytönen J. Lyme Borreliosis and Deficient Mannose-Binding Lectin Pathway of Complement. J Immunol. 2015;194(1):358–363. doi: 10.4049/jimmunol.1402128
  50. Coumou J, Wagemakers A, Narasimhan S, et al. The role of Mannose Binding Lectin in the immune response against Borrelia burgdorferi sensu lato. Sci Rep. 2019;9(1):1431. doi: 10.1038/s41598-018-37922-8
  51. Kraiczy P, Stevenson B. Complement regulator-acquiring surface proteins of Borrelia burgdorferi: Structure, function and regulation of gene expression. Ticks Tick Borne Dis. 2013;4(1-2):26–34. doi: 10.1016/j.ttbdis.2012.10.039
  52. Hallström T, Siegel C, Mörgelin M, et al. CspA from Borrelia burgdorferi inhibits the terminal complement pathway. mBio. 2013;4(4):e00481-13. doi: 10.1128/mBio.00481-13
  53. Sayfullin RF, Zvereva NN, Saifullin МА, et al. Detection of antibodies to B. burgdorferi by enzyme immunoassay in patients with Lyme borreliosis. Children Infections. 2022;21(4):32–36. (In Russ). doi: 10.22627/2072-8107-2022-21-4-32-36
  54. Markowicz M, Reiter M, Gamper J, Stanek G, Stockinger H. Persistent Anti-Borrelia IgM Antibodies without Lyme Borreliosis in the Clinical and Immunological Context. Microbiol Spectr. 2021;9(3):e0102021. doi: 10.1128/Spectrum.01020-21
  55. D’Arco C, Dattwyler RJ, Arnaboldi PM. Borrelia burgdorferi-specific IgA in Lyme Disease. EBioMedicine. 2017;19:91–97. doi: 10.1016/j.ebiom.2017.04.025
  56. Norris SJ. vls Antigenic Variation Systems of Lyme Disease Borrelia: Eluding Host Immunity through both Random, Segmental Gene Conversion and Framework Heterogeneity. Microbiol Spectr. 2014;2(6). doi: 10.1128/microbiolspec.MDNA3-0038-2014
  57. Jiang R, Meng H, Raddassi K, et al. Single-cell immunophenotyping of the skin lesion erythema migrans identifies IgM memory B cells. JCI Insight. 2021;6(12):e148035. doi: 10.1172/jci.insight.148035
  58. Lasky CE, Pratt CL, Hilliard KA, Jones JL, Brown CR. T Cells Exacerbate Lyme Borreliosis in TLR2-Deficient Mice. Front Immunol. 2016;(7):468. doi: 10.3389/fimmu.2016.00468
  59. Divan A, Budd RC, Tobin RP, Newell-Rogers MK. γδ T Cells and dendritic cells in refractory Lyme arthritis. J Leukoc Biol. 2015;97(4):653–663. doi: 10.1189/jlb.2RU0714-343RR

Copyright (c) 2023 Eco-vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies