Development and study of the performance of a reagent kit for the identification of Vibrio cholerae and Vibrio parahaemolyticus by multilocus allele-specific polymerase chain reaction in clinical trials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Cholera belongs to the group of infections, and the fight against it is regulated by the WHO International Health Regulations (2005). To date, several test systems have been developed for the polymerase chain reaction (PCR) detection of Vibrio cholerae strains. However, no PCR test systems have been registered for detecting V. parahaemolyticus DNA in clinical material in Russia.

AIM: To conduct clinical trials and evaluate the performance of the “Reagent kit for identification of V. cholerae and V. parahaemolyticus by multilocus allele-specific PCR” (kit of reagents “Vibrio-screen FL”) for the state registration of the specified medical device.

MATERIALS AND METHODS: The study presents the results of the clinical trials for the reagent kit “Vibrio-screen FL” that has been developed to optimize the means and methods of identification and differentiation of pathogens of dangerous infections based on data on the diversity of genomes. Clinical trials were conducted at the Head Center of Hygiene and Epidemiology of the FMBA of Russia (license from 02.12.2013 No. ФС-99-01-008342; permission of the Ministry of Health from 16.05.2013 No. 300n) in accordance with the program of clinical trials No. 20.ПМКИ-042/10.20 from 23.09.2020 (Clinical Trial Certificate No. 01.AK-042/10.20 dated 12.10.2020). The clinical trials of the developed reagent kit “Vibrio-screen FL” used clinical strains of microorganisms of the genus Vibrio and other microorganism species as target analytes. Bacteriological method and multilocus PCR with hybridization-fluorescence detection were used.

RESULTS: The reagent kit “Vibrio-screen FL” is a medical device for professional use in clinical laboratory diagnostics. The analytical sensitivity of the reagent kit “Vibrio-screen FL” was at least 106 copies of the SecY gene when determining belonging to the genus Vibrio; to the species V. cholerae, at least 106 copies of the hlyA gene; and to the species V. parahaemolyticus, at least 106 copies of the vppC gene. When determining the analytical specificity, no non-specific reactions with DNA samples of other microorganism species were found. A medical device for in vitro diagnostics “A reagent kit for the identification of V. cholerae and V. parahaemolyticus by multilocus allele-specific PCR (Vibrio-screen FL)” meets the requirements of the intended use, which allows it to be used for the differentiation of V. cholerae and V. parahaemolyticus strains isolated from a cultured clinical samples by multilocus allele-specific polymerase chain reaction with hybridization-fluorescent detection. The registration certificate No. РЗН 2021/13360 from 08.02.2021 was received. By the order of Roszdravnadzordated 08.02.2021 No. 1041, a reagent kit Vibrio-screen FL by the Rostov-on-Don Anti-Plague Institute of Rospotrebnadzor was admitted to distribution on the territory of the Russian Federation.

CONCLUSIONS: The reagent kit “Vibrio-screen FL” is a high-quality, effective, and safe diagnostic medical device for in vitro diagnostics with sufficient diagnostic sensitivity and specificity to identify specific fragments of Vibrio spp., V. cholerae, and V. parahaemolyticus nucleic acids. These allows it to be used in clinical laboratory diagnostics for epidemiological analysis and registration of diseases caused by pathogenic vibrions.

About the authors

Olga S. Chemisova

Rostov-on-Don Plague Control Researsh Institute

Email: chemisova@inbox.ru
ORCID iD: 0000-0002-4059-2878
SPIN-code: 1129-7436
Scopus Author ID: 6505888018

Cand. Sci. (Biol.)

Russian Federation, Rostov-on-Don

Marina V. Poleeva

Rostov-on-Don Plague Control Researsh Institute

Author for correspondence.
Email: marina-akulova@mail.ru
ORCID iD: 0000-0001-8086-376X
Russian Federation, Rostov-on-Don

Sergey O. Vodopyanov

Rostov-on-Don Plague Control Researsh Institute

Email: serge100v@gmail.com
ORCID iD: 0000-0003-4336-0439
SPIN-code: 4672-9310

MD, Dr. Sci. (Med.)

Russian Federation, Rostov-on-Don

Alexey S. Vodopyanov

Rostov-on-Don Plague Control Researsh Institute

Email: alexvod@gmail.com
ORCID iD: 0000-0002-9056-3231

MD, Cand. Sci. (Med.)

Russian Federation, Rostov-on-Don

Alexey L. Trukhachev

Rostov-on-Don Plague Control Researsh Institute

Email: trukhachev_al@antiplague.ru
ORCID iD: 0000-0002-3531-1146

MD, Cand. Sci. (Med.)

Russian Federation, Rostov-on-Don

Ruslan V. Pisanov

Rostov-on-Don Plague Control Researsh Institute

Email: pisanov_rv@antiplague.ru
ORCID iD: 0000-0002-7178-8021

Cand. Sci. (Biol.)

Russian Federation, Rostov-on-Don

Vladimir D. Kruglikov

Rostov-on-Don Plague Control Researsh Institute

Email: kruglikov_vd@antiplague.ru
ORCID iD: 0000-0002-6540-2778

MD, Dr. Sci. (Med.)

Russian Federation, Rostov-on-Don

Alexey K. Noskov

Rostov-on-Don Plague Control Researsh Institute

Email: noskov-epid@mail.ru
ORCID iD: 0000-0003-0550-2221

Cand. Sci. (Med.)

Russian Federation, Rostov-on-Don

References

  1. Azman AS, Lauer SA, Bhuiyan TR, et al. Vibrio cholerae O1 transmission in Bangladesh: insights from a nationally representative serosurvey. Lancet Microbe. 2020;1(8):e336–e343. doi: 10.1016/S2666-5247(20)30141-5
  2. Deen J, Mengel MA, Clemens JD. Epidemiology of cholera. Vaccine. 2020;38(Suppl. 1):A31–A40. doi: 10.1016/j.vaccine.2019.07.078
  3. Ramamurthy T, Das B, Chakraborty S, Mukhopadhyay AK, Sack DA. Diagnostic techniques for rapid detection of Vibrio cholerae O1/O139. Vaccine. 2020;38(Suppl. 1):A73–A82. doi: 10.1016/j.vaccine.2019.07.099
  4. Nayak SR, Nayak AK, Biswal BL, et al. Spread of Haitian Variant Vibrio cholerae O1 Causing Cholera Outbreaks in Odisha, India. Jpn J Infect Dis. 2021;74(2):137–143. doi: 10.7883/yoken.JJID.2020.364
  5. Yoon SH, Waters CM. Vibrio cholerae. Trends Microbiol. 2019; 27(9):806–807. doi: 10.1016/j.tim.2019.03.005
  6. International health regulations. WHO; 2005. 3rd ed. Available from: https://apps.who.int/iris/bitstream/handle/10665/246188/9789244580493-eng.pdf. Accessed: 21.11.2022. (In Russ).
  7. Sanitary and epidemiological requirements for the prevention of infectious diseases SanPin 3.3686-21. Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor; 2021. Available from: https://www.rospotrebnadzor.ru/files/news/SP_infections_compressed.pdf. Accessed: 21.11.2022. (In Russ).
  8. Yeung PS, Boor KJ. Epidemiology, pathogenesis, and prevention of foodborne Vibrio parahaemolyticus infections. Foodborne Pathog Dis. 2004;1(2):74–88. doi: 10.1089/153531404323143594
  9. Nair GB, Hormazábal JC. The Vibrio parahaemolyticus pandemic. Rev Chilena Infectol. 2005;22(2):125–130. doi: 10.4067/s0716-10182005000200002
  10. Osei-Adjei G, Huang X, Zhang Y. The extracellular proteases produced by Vibrio parahaemolyticus. World J Microbiol Biotechnol. 2018;34(5):68. doi: 10.1007/s11274-018-2453-4
  11. Su C, Chen L. Virulence, resistance, and genetic diversity of Vibrio parahaemolyticus recovered from commonly consumed aquatic products in Shanghai, China. Mar Pollut Bull. 2020;160:111554. doi: 10.1016/j.marpolbul.2020.111554
  12. Deepanjali A, Kumar HS, Karunasagar I, Karunasagar I. Seasonal variation in abundance of total and pathogenic Vibrio parahaemolyticus bacteria in oysters along the southwest coast of India. Appl Environ Microbiol. 2005;71(7):3575–3580. doi: 10.1128/AEM.71.7.3575-3580.2005
  13. Elmahdi S, DaSilva LV, Parveen S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review. Food Microbiol. 2016;57:128–134. doi: 10.1016/j.fm.2016.02.008
  14. Hou CC, Lai CC, Liu WL, et al. Clinical manifestation and prognostic factors of non-cholerae Vibrio infections. Eur J Clin Microbiol Infect Dis. 2011;30(6):819–824. doi: 10.1007/s10096-011-1162-9
  15. Baker-Austin C, Oliver JD, Alam M, et al. Vibrio spp. infections. Nat Rev Dis Primers. 2018;4(1):8. doi: 10.1038/s41572-018-0005-8. Erratum in: Nat Rev Dis Primers. 2021;7(1):15.
  16. Li L, Meng H, Gu D, et al. Molecular mechanisms of Vibrio parahaemolyticus pathogenesis. Microbiol Res. 2019;222:43–51. doi: 10.1016/j.micres.2019.03.003
  17. Rezny BR, Evans DS. Vibrio Parahaemolyticus. Treasure Island (FL): StatPearls Publishing; 2020.
  18. Guan H, Zhang J, Xiao Y, et al. Evaluation of PCR Based Assays for the Improvement of Proportion Estimation of Bacterial and Viral Pathogens in Diarrheal Surveillance. Front Microbiol. 2016;7:386. doi: 10.3389/fmicb.2016.00386
  19. Bonnin-Jusserand M, Copin S, Le Bris C, et al. Vibrio species involved in seafood-borne outbreaks (Vibrio cholerae, V. parahaemolyticus and V. vulnificus): Review of microbiological versus recent molecular detection methods in seafood products. Crit Rev Food Sci Nutr. 2019;59(4):597–610. doi: 10.1080/10408398.2017.1384715
  20. Patent RU No. 2644232/ 25.11.2016. Chemisova OS, Trukhachev AL, Rykovskaya OA, Poleeva MV. Sposob identifikatsii shtammov vida Vibrio parahaemolyticus metodom PTSR v rezhime real’nogo vremeni. Available from: https://yandex.ru/patents/doc/RU2644232C1_20180208 (In Russ).
  21. Poleeva MV, Chemisova OS, Trukhachev AL. Development of a method for the indication and identification of Vibrio parahaemolyticus using Real-Time PCR. Bulletin of the Perm University. Series “Biology”. 2019;(2):175–181. (In Russ). doi: 10.17072/1994-9952-2019-2-175-181
  22. Laboratory diagnosis of cholera. Methodical instructions. MUK 4.2.2218-07. Moscow; 2007. 87 p. Available from: https://docs.cntd.ru/document/1200059377. Accessed: 21.11.2022. (In Russ).
  23. Vodopyanov AS, Vodopyanov SO, Pisanov RV, et al. Algorithm for analyzing the results of whole genome sequencing using the example of cholera pathogen strains isolated in the Russian Federation. In: Pokrovsky VI, editor. Molecular Diagnostics. Vol. 2. Moscow: Publishing House MBA; 2014. P:461–462. (In Russ).
  24. Vodopyanov AS, Vodopyanov SO, Mishankin BN, Oleinikov IP. Computerized VNTR typing algorithm based on incomplete sequences of Vibrio cholerae DNA strains isolated in Haiti in 2010. Population Health and Habitat. 2013;(3):28–30. (In Russ).
  25. Organization of the work of laboratories using nucleic acid amplification methods when working with material containing microorganisms of pathogenicity groups I–IV: Guidelines. MU 1.3.2569-09. Moscow; 2010. 51 p. Available from: https://docs.cntd.ru/document/1200077791. Accessed: 21.11.2022. (In Russ).
  26. Ma C, Wu X, Sun D, et al. Structure of the substrate-engaged SecA-SecY protein translocation machine. Nat Commun. 2019; 10(1):2872. doi: 10.1038/s41467-019-10918-2
  27. Smets D, Loos MS, Karamanou S, Economou A. Protein Transport Across the Bacterial Plasma Membrane by the Sec Pathway. Protein J. 2019;38(3):262–273. doi: 10.1007/s10930-019-09841-8

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Eco-vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies