Complete Set of Invariants for a Bykov Attractor
- 作者: Carvalho M.1, Rodrigues A.P.1
-
隶属关系:
- Centro de Matemática da Universidade do Porto
- 期: 卷 23, 编号 3 (2018)
- 页面: 227-247
- 栏目: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218959
- DOI: https://doi.org/10.1134/S1560354718030012
- ID: 218959
如何引用文章
详细
In this paper we consider an attracting heteroclinic cycle made by a 1-dimensional and a 2-dimensional separatrices between two hyperbolic saddles having complex eigenvalues. The basin of the global attractor exhibits historic behavior and, from the asymptotic properties of these nonconverging time averages, we obtain a complete set of invariants under topological conjugacy in a neighborhood of the cycle. These invariants are determined by the quotient of the real parts of the eigenvalues of the equilibria, a linear combination of their imaginary components and also the transition maps between two cross sections on the separatrices.
作者简介
Maria Carvalho
Centro de Matemática da Universidade do Porto
编辑信件的主要联系方式.
Email: mpcarval@fc.up.pt
葡萄牙, Rua do Campo Alegre 687, Porto, 4169-007
Alexandre Rodrigues
Centro de Matemática da Universidade do Porto
Email: mpcarval@fc.up.pt
葡萄牙, Rua do Campo Alegre 687, Porto, 4169-007
补充文件
