Complete Set of Invariants for a Bykov Attractor


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper we consider an attracting heteroclinic cycle made by a 1-dimensional and a 2-dimensional separatrices between two hyperbolic saddles having complex eigenvalues. The basin of the global attractor exhibits historic behavior and, from the asymptotic properties of these nonconverging time averages, we obtain a complete set of invariants under topological conjugacy in a neighborhood of the cycle. These invariants are determined by the quotient of the real parts of the eigenvalues of the equilibria, a linear combination of their imaginary components and also the transition maps between two cross sections on the separatrices.

作者简介

Maria Carvalho

Centro de Matemática da Universidade do Porto

编辑信件的主要联系方式.
Email: mpcarval@fc.up.pt
葡萄牙, Rua do Campo Alegre 687, Porto, 4169-007

Alexandre Rodrigues

Centro de Matemática da Universidade do Porto

Email: mpcarval@fc.up.pt
葡萄牙, Rua do Campo Alegre 687, Porto, 4169-007

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018