Complete Set of Invariants for a Bykov Attractor
- Авторлар: Carvalho M.1, Rodrigues A.P.1
-
Мекемелер:
- Centro de Matemática da Universidade do Porto
- Шығарылым: Том 23, № 3 (2018)
- Беттер: 227-247
- Бөлім: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218959
- DOI: https://doi.org/10.1134/S1560354718030012
- ID: 218959
Дәйексөз келтіру
Аннотация
In this paper we consider an attracting heteroclinic cycle made by a 1-dimensional and a 2-dimensional separatrices between two hyperbolic saddles having complex eigenvalues. The basin of the global attractor exhibits historic behavior and, from the asymptotic properties of these nonconverging time averages, we obtain a complete set of invariants under topological conjugacy in a neighborhood of the cycle. These invariants are determined by the quotient of the real parts of the eigenvalues of the equilibria, a linear combination of their imaginary components and also the transition maps between two cross sections on the separatrices.
Негізгі сөздер
Авторлар туралы
Maria Carvalho
Centro de Matemática da Universidade do Porto
Хат алмасуға жауапты Автор.
Email: mpcarval@fc.up.pt
Португалия, Rua do Campo Alegre 687, Porto, 4169-007
Alexandre Rodrigues
Centro de Matemática da Universidade do Porto
Email: mpcarval@fc.up.pt
Португалия, Rua do Campo Alegre 687, Porto, 4169-007
Қосымша файлдар
