Weak nonlinear asymptotic solutions for the fourth order analogue of the second Painlevé equation
- Авторлар: Gaiur I.Y.1, Kudryashov N.A.1
-
Мекемелер:
- Department of Applied Mathematics
- Шығарылым: Том 22, № 3 (2017)
- Беттер: 266-271
- Бөлім: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218626
- DOI: https://doi.org/10.1134/S1560354717030066
- ID: 218626
Дәйексөз келтіру
Аннотация
The fourth-order analogue of the second Painlevé equation is considered. The monodromy manifold for a Lax pair associated with the P22 equation is constructed. The direct monodromy problem for the Lax pair is solved. Asymptotic solutions expressed via trigonometric functions in the Boutroux variables along the rays ϕ = \(\frac{2}{5}\)π(2n + 1) on the complex plane have been found by the isomonodromy deformations technique.
Авторлар туралы
Ilia Gaiur
Department of Applied Mathematics
Хат алмасуға жауапты Автор.
Email: IYGaur@mephi.ru
Ресей, Kashirskoe sh. 31, Moscow, 115409
Nikolay Kudryashov
Department of Applied Mathematics
Email: IYGaur@mephi.ru
Ресей, Kashirskoe sh. 31, Moscow, 115409
Қосымша файлдар
