Whitney smooth families of invariant tori within the reversible context 2 of KAM theory
- 作者: Sevryuk M.B.1
-
隶属关系:
- V. L.Talroze Institute of Energy Problems of Chemical Physics of the Russian Academy of Sciences
- 期: 卷 21, 编号 6 (2016)
- 页面: 599-620
- 栏目: On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1
- URL: https://journals.rcsi.science/1560-3547/article/view/218390
- DOI: https://doi.org/10.1134/S1560354716060022
- ID: 218390
如何引用文章
详细
We prove a general theorem on the persistence of Whitney C∞-smooth families of invariant tori in the reversible context 2 of KAM theory. This context refers to the situation where dim FixG < (codim T)/2, where FixG is the fixed point manifold of the reversing involution G and T is the invariant torus in question. Our result is obtained as a corollary of the theorem by H. W.Broer, M.-C.Ciocci, H.Hanßmann, and A.Vanderbauwhede (2009) concerning quasi-periodic stability of invariant tori with singular “normal” matrices in reversible systems.
作者简介
Mikhail Sevryuk
V. L.Talroze Institute of Energy Problems of Chemical Physics of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: sevryuk@mccme.ru
俄罗斯联邦, Leninskii pr. 38, Building 2, Moscow, 119334
补充文件
