Whitney smooth families of invariant tori within the reversible context 2 of KAM theory
- Autores: Sevryuk M.B.1
-
Afiliações:
- V. L.Talroze Institute of Energy Problems of Chemical Physics of the Russian Academy of Sciences
- Edição: Volume 21, Nº 6 (2016)
- Páginas: 599-620
- Seção: On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1
- URL: https://journals.rcsi.science/1560-3547/article/view/218390
- DOI: https://doi.org/10.1134/S1560354716060022
- ID: 218390
Citar
Resumo
We prove a general theorem on the persistence of Whitney C∞-smooth families of invariant tori in the reversible context 2 of KAM theory. This context refers to the situation where dim FixG < (codim T)/2, where FixG is the fixed point manifold of the reversing involution G and T is the invariant torus in question. Our result is obtained as a corollary of the theorem by H. W.Broer, M.-C.Ciocci, H.Hanßmann, and A.Vanderbauwhede (2009) concerning quasi-periodic stability of invariant tori with singular “normal” matrices in reversible systems.
Palavras-chave
Sobre autores
Mikhail Sevryuk
V. L.Talroze Institute of Energy Problems of Chemical Physics of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: sevryuk@mccme.ru
Rússia, Leninskii pr. 38, Building 2, Moscow, 119334
Arquivos suplementares
