The spatial problem of 2 bodies on a sphere. Reduction and stochasticity


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper, we consider in detail the 2-body problem in spaces of constant positive curvature S2 and S3. We perform a reduction (analogous to that in rigid body dynamics) after which the problem reduces to analysis of a two-degree-of-freedom system. In the general case, in canonical variables the Hamiltonian does not correspond to any natural mechanical system. In addition, in the general case, the absence of an analytic additional integral follows from the constructed Poincaré section. We also give a review of the historical development of celestial mechanics in spaces of constant curvature and formulate open problems.

Авторлар туралы

Alexey Borisov

Steklov Mathematical Institute

Хат алмасуға жауапты Автор.
Email: borisov@rcd.ru
Ресей, ul. Gubkina 8, Moscow, 119991

Ivan Mamaev

Steklov Mathematical Institute

Email: borisov@rcd.ru
Ресей, ul. Gubkina 8, Moscow, 119991

Ivan Bizyaev

Steklov Mathematical Institute

Email: borisov@rcd.ru
Ресей, ul. Gubkina 8, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016