Periodic Billiards Within Conics in the Minkowski Plane and Akhiezer Polynomials
- Авторлар: Adabrah A.K.1, Dragović V.1,2, Radnović M.2,3
-
Мекемелер:
- Department of Mathematical Sciences
- Mathematical Institute SANU
- School of Mathematics and Statistics
- Шығарылым: Том 24, № 5 (2019)
- Беттер: 464-501
- Бөлім: Sergey Chaplygin Memorial Issue
- URL: https://journals.rcsi.science/1560-3547/article/view/219368
- DOI: https://doi.org/10.1134/S1560354719050034
- ID: 219368
Дәйексөз келтіру
Аннотация
We derive necessary and sufficient conditions for periodic and for elliptic periodic trajectories of billiards within an ellipse in the Minkowski plane in terms of an underlining elliptic curve. We provide several examples of periodic and elliptic periodic trajectories with small periods. We observe a relationship between Cayley-type conditions and discriminantly separable and factorizable polynomials. Equivalent conditions for periodicity and elliptic periodicity are derived in terms of polynomial-functional equations as well. The corresponding polynomials are related to the classical extremal polynomials. In particular, the light-like periodic trajectories are related to the classical Chebyshev polynomials. Similarities and differences with respect to the previously studied Euclidean case are highlighted.
Авторлар туралы
Anani Adabrah
Department of Mathematical Sciences
Хат алмасуға жауапты Автор.
Email: ananikomla.adabrah@utdallas.edu
АҚШ, 800 West Campbell Road, Richardson, TX, 75080
Vladimir Dragović
Department of Mathematical Sciences; Mathematical Institute SANU
Хат алмасуға жауапты Автор.
Email: vladimir.dragovic@utdallas.edu
АҚШ, 800 West Campbell Road, Richardson, TX, 75080; Kneza Mihaila 36, Beograd, p.p. 367, 11001
Milena Radnović
Mathematical Institute SANU; School of Mathematics and Statistics
Хат алмасуға жауапты Автор.
Email: milena.radnovic@sydney.edu.au
Сербия, Kneza Mihaila 36, Beograd, p.p. 367, 11001; Carslaw F07, Sydney, NSW, 2006
Қосымша файлдар
