Precession of the Kovalevskaya and Goryachev — Chaplygin Tops
- 作者: Polekhin I.Y.1
- 
							隶属关系: 
							- Steklov Mathematical Institute
 
- 期: 卷 24, 编号 3 (2019)
- 页面: 281-297
- 栏目: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/219320
- DOI: https://doi.org/10.1134/S1560354719030031
- ID: 219320
如何引用文章
详细
The change of the precession angle is studied analytically and numerically for two classical integrable tops: the Kovalevskaya top and the Goryachev — Chaplygin top. Based on the known results on the topology of Liouville foliations for these systems, we find initial conditions for which the average change of the precession angle is zero or can be estimated asymptotically. Some more difficult cases are studied numerically. In particular, we show that the average change of the precession angle for the Kovalevskaya top can be non-zero even in the case of zero area integral.
作者简介
Ivan Polekhin
Steklov Mathematical Institute
							编辑信件的主要联系方式.
							Email: ivanpolekhin@mi-ras.ru
				                					                																			                												                	俄罗斯联邦, 							ul. Gubkina 8, Moscow, 119991						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					