The hyperbolic plane, three-body problems, and Mnëv’s universality theorem
- Autores: Montgomery R.1
- 
							Afiliações: 
							- Mathematics Department, University of California
 
- Edição: Volume 22, Nº 6 (2017)
- Páginas: 688-699
- Seção: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218770
- DOI: https://doi.org/10.1134/S1560354717060077
- ID: 218770
Citar
Resumo
We show how to construct the hyperbolic plane with its geodesic flow as the reduction of a three-problem whose potential is proportional to I/Δ2 where I is the moment of inertia of this triangle whose vertices are the locations of the three bodies and Δ is its area. The reduction method follows [11]. Reduction by scaling is only possible because the potential is homogeneous of degree −2. In trying to extend the assertion of hyperbolicity to the analogous family of planar N-body problems with three-body interaction potentials we run into Mn¨ev’s astounding universality theorem which implies that the extended assertion is doomed to fail.
Sobre autores
Richard Montgomery
Mathematics Department, University of California
							Autor responsável pela correspondência
							Email: rmont@ucsc.edu
				                					                																			                												                	Estados Unidos da América, 							Santa Cruz CA, 95064						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					