The hyperbolic plane, three-body problems, and Mnëv’s universality theorem


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We show how to construct the hyperbolic plane with its geodesic flow as the reduction of a three-problem whose potential is proportional to I/Δ2 where I is the moment of inertia of this triangle whose vertices are the locations of the three bodies and Δ is its area. The reduction method follows [11]. Reduction by scaling is only possible because the potential is homogeneous of degree −2. In trying to extend the assertion of hyperbolicity to the analogous family of planar N-body problems with three-body interaction potentials we run into Mn¨ev’s astounding universality theorem which implies that the extended assertion is doomed to fail.

Авторлар туралы

Richard Montgomery

Mathematics Department, University of California

Хат алмасуға жауапты Автор.
Email: rmont@ucsc.edu
АҚШ, Santa Cruz CA, 95064

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017