Persistence Properties of Normally Hyperbolic Tori
- 作者: Broer H.1, Hanßmann H.2, Wagener F.3
- 
							隶属关系: 
							- Johann Bernoulli Institute for Mathematics and Computer Science Rijksuniversiteit Groningen
- Mathematisch Instituut
- Center for Nonlinear Dynamics in Economics and Finance (CeNDEF) Amsterdam School of Economics
 
- 期: 卷 23, 编号 2 (2018)
- 页面: 212-225
- 栏目: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218954
- DOI: https://doi.org/10.1134/S1560354718020065
- ID: 218954
如何引用文章
详细
Near-resonances between frequencies notoriously lead to small denominators when trying to prove persistence of invariant tori carrying quasi-periodic motion. In dissipative systems external parameters detuning the frequencies are needed so that Diophantine conditions can be formulated, which allow to solve the homological equation that yields a conjugacy between perturbed and unperturbed quasi-periodic tori. The parameter values for which the Diophantine conditions are not fulfilled form so-called resonance gaps. Normal hyperbolicity can guarantee invariance of the perturbed tori, if not their quasi-periodicity, for larger parameter ranges. For a 1-dimensional parameter space this allows to close almost all resonance gaps.
作者简介
Henk Broer
Johann Bernoulli Institute for Mathematics and Computer Science Rijksuniversiteit Groningen
							编辑信件的主要联系方式.
							Email: h.w.broer@rug.nl
				                					                																			                												                	荷兰, 							Groningen, AG, 9747						
Heinz Hanßmann
Mathematisch Instituut
														Email: h.w.broer@rug.nl
				                					                																			                												                	荷兰, 							Utrecht, TA, 3508						
Florian Wagener
Center for Nonlinear Dynamics in Economics and Finance (CeNDEF) Amsterdam School of Economics
														Email: h.w.broer@rug.nl
				                					                																			                												                	荷兰, 							Amsterdam, NJ, 1001						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					