Quasi-periodic Orbits in Siegel Disks/Balls and the Babylonian Problem


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We investigate numerically complex dynamical systems where a fixed point is surrounded by a disk or ball of quasi-periodic orbits, where there is a change of variables (or conjugacy) that converts the system into a linear map. We compute this “linearization” (or conjugacy) from knowledge of a single quasi-periodic trajectory. In our computations of rotation rates of the almost periodic orbits and Fourier coefficients of the conjugacy, we only use knowledge of a trajectory, and we do not assume knowledge of the explicit form of a dynamical system. This problem is called the Babylonian problem: determining the characteristics of a quasi-periodic set from a trajectory. Our computation of rotation rates and Fourier coefficients depends on the very high speed of our computational method “the weighted Birkhoff average”.

作者简介

Yoshitaka Saiki

Graduate School of Business Administration; JST PRESTO; University of Maryland

编辑信件的主要联系方式.
Email: yoshi.saiki@r.hit-u.ac.jp
日本, 2–1 Naka, Kunitachi, Tokyo, 186 8601; 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332 0012; College Park, MD, 20742

James Yorke

University of Maryland

Email: yoshi.saiki@r.hit-u.ac.jp
美国, College Park, MD, 20742

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018