Stability of the Polar Equilibria in a Restricted Three-Body Problem on the Sphere
- Авторы: Andrade J.1, Vidal C.1
- 
							Учреждения: 
							- Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA
 
- Выпуск: Том 23, № 1 (2018)
- Страницы: 80-101
- Раздел: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218918
- DOI: https://doi.org/10.1134/S1560354718010070
- ID: 218918
Цитировать
Аннотация
In this paper we consider a symmetric restricted circular three-body problem on the surface S2 of constant Gaussian curvature κ = 1. This problem consists in the description of the dynamics of an infinitesimal mass particle attracted by two primaries with identical masses, rotating with constant angular velocity in a fixed parallel of radius a ∈ (0, 1). It is verified that both poles of S2 are equilibrium points for any value of the parameter a. This problem is modeled through a Hamiltonian system of two degrees of freedom depending on the parameter a. Using results concerning nonlinear stability, the type of Lyapunov stability (nonlinear) is provided for the polar equilibria, according to the resonances. It is verified that for the north pole there are two values of bifurcation (on the stability) \(a = \frac{{\sqrt {4 - \sqrt 2 } }}{2}\) and \(a = \sqrt {\frac{2}{3}} \), while the south pole has one value of bifurcation \(a = \frac{{\sqrt 3 }}{2}\).
Об авторах
Jaime Andrade
Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA
							Автор, ответственный за переписку.
							Email: jandrade@ubiobio.cl
				                					                																			                												                	Чили, 							Casilla 5–C, Concepción, VIII–región						
Claudio Vidal
Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA
														Email: jandrade@ubiobio.cl
				                					                																			                												                	Чили, 							Casilla 5–C, Concepción, VIII–región						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					