Normalization in Lie algebras via mould calculus and applications
- Авторлар: Paul T.1, Sauzin D.2
-
Мекемелер:
- CMLS, Ecole polytechnique, CNRS
- CNRS UMR 8028 – IMCCE
- Шығарылым: Том 22, № 6 (2017)
- Беттер: 616-649
- Бөлім: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218747
- DOI: https://doi.org/10.1134/S1560354717060041
- ID: 218747
Дәйексөз келтіру
Аннотация
We establish Écalle’s mould calculus in an abstract Lie-theoretic setting and use it to solve a normalization problem, which covers several formal normal form problems in the theory of dynamical systems. The mould formalism allows us to reduce the Lie-theoretic problem to a mould equation, the solutions of which are remarkably explicit and can be fully described by means of a gauge transformation group. The dynamical applications include the construction of Poincaré–Dulac formal normal forms for a vector field around an equilibrium point, a formal infinite-order multiphase averaging procedure for vector fields with fast angular variables (Hamiltonian or not), or the construction of Birkhoff normal forms both in classical and quantum situations. As a by-product we obtain, in the case of harmonic oscillators, the convergence of the quantum Birkhoff form to the classical one, without any Diophantine hypothesis on the frequencies of the unperturbed Hamiltonians.
Негізгі сөздер
Авторлар туралы
Thierry Paul
CMLS, Ecole polytechnique, CNRS
Хат алмасуға жауапты Автор.
Email: thierry.paul@polytechnique.edu
Франция, Palaiseau Cedex, 91128
David Sauzin
CNRS UMR 8028 – IMCCE
Email: thierry.paul@polytechnique.edu
Франция, Paris, 75014
Қосымша файлдар
