Holomorphic normal form of nonlinear perturbations of nilpotent vector fields
- Autores: Stolovitch L.1, Verstringe F.2
- 
							Afiliações: 
							- CNRS, Laboratoire J.-A. Dieudonné U.M.R. 6621
- Royal Observatory of Belgium
 
- Edição: Volume 21, Nº 4 (2016)
- Páginas: 410-436
- Seção: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218334
- DOI: https://doi.org/10.1134/S1560354716040031
- ID: 218334
Citar
Resumo
We consider germs of holomorphic vector fields at a fixed point having a nilpotent linear part at that point, in dimension n ≥ 3. Based on Belitskii’s work, we know that such a vector field is formally conjugate to a (formal) normal form. We give a condition on that normal form which ensures that the normalizing transformation is holomorphic at the fixed point.We shall show that this sufficient condition is a nilpotent version of Bruno’s condition (A). In dimension 2, no condition is required since, according to Stróżyna–Żołladek, each such germ is holomorphically conjugate to a Takens normal form. Our proof is based on Newton’s method and sl2(C)-representations.
Sobre autores
Laurent Stolovitch
CNRS, Laboratoire J.-A. Dieudonné U.M.R. 6621
							Autor responsável pela correspondência
							Email: stolo@unice.fr
				                					                																			                												                	França, 							Nice Cedex 02, 06108						
Freek Verstringe
Royal Observatory of Belgium
														Email: stolo@unice.fr
				                					                																			                												                	Bélgica, 							Ringlaan 3, Brussels, 1180						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					