Topological analysis corresponding to the Borisov–Mamaev–Sokolov integrable system on the Lie algebra so(4)


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In 2001, A. V. Borisov, I. S. Mamaev, and V. V. Sokolov discovered a new integrable case on the Lie algebra so(4). This is a Hamiltonian system with two degrees of freedom, where both the Hamiltonian and the additional integral are homogenous polynomials of degrees 2 and 4, respectively. In this paper, the topology of isoenergy surfaces for the integrable case under consideration on the Lie algebra so(4) and the critical points of the Hamiltonian under consideration for different values of parameters are described and the bifurcation values of the Hamiltonian are constructed. Also, a description of bifurcation complexes and typical forms of the bifurcation diagram of the system are presented.

Авторлар туралы

Rasoul Akbarzadeh

Department of Fundamental Sciences

Хат алмасуға жауапты Автор.
Email: Akbarzadeh.rasoul@gmail.com
Иран, 35 Km Tabriz-Maragheh Road, Tabriz

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016