Classical and Quantum Dynamics of a Particle in a Narrow Angle


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the 2D Schrödinger equation with variable potential in the narrow domain diffeomorphic to the wedge with the Dirichlet boundary condition. The corresponding classical problem is the billiard in this domain. In general, the corresponding dynamical system is not integrable. The small angle is a small parameter which allows one to make the averaging and reduce the classical dynamical system to an integrable one modulo exponential small correction. We use the quantum adiabatic approximation (operator separation of variables) to construct the asymptotic eigenfunctions (quasi-modes) of the Schrödinger operator. We discuss the relation between classical averaging and constructed quasi-modes. The behavior of quasi-modes in the neighborhood of the cusp is studied. We also discuss the relation between Bessel and Airy functions that follows from different representations of asymptotics near the cusp.

Sobre autores

Sergei Dobrokhotov

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences (IP Mech RAS); Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: dobr@ipmnet.ru
Rússia, prosp. Vernadskogo 101, Moscow, 119526; Institutskii per. 9, Dolgoprudnyi, 141701

Dmitrii Minenkov

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences (IP Mech RAS); Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: minenkov.ds@gmail.com
Rússia, prosp. Vernadskogo 101, Moscow, 119526; Institutskii per. 9, Dolgoprudnyi, 141701

Anatoly Neishtadt

Space Research Institute; Loughborough University

Autor responsável pela correspondência
Email: a.neishtadt@lboro.ac.uk
Rússia, Profsoyuznaya ul. 84/32, Moscow, 117997; Epinal Way, Loughborough, Leicestershire

Semen Shlosman

Aix Marseille Univ, Universite de Toulon, CNRS, CPT; Skolkovo Institute of Science and Technology; Institute of the Information Transmission Problems

Autor responsável pela correspondência
Email: shlosman@gmail.com
França, Marseille; Nobel ul. 3, Moscow, 121205; Bolshoy Karetny per. 19, Moscow, 127051

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019