The Kepler Problem: Polynomial Algebra of Nonpolynomial First Integrals


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The sum of elliptic integrals simultaneously determines orbits in the Kepler problem and the addition of divisors on elliptic curves. Periodic motion of a body in physical space is defined by symmetries, whereas periodic motion of divisors is defined by a fixed point on the curve. The algebra of the first integrals associated with symmetries is a well-known mathematical object, whereas the algebra of the first integrals associated with the coordinates of fixed points is unknown. In this paper, we discuss polynomial algebras of nonpolynomial first integrals of superintegrable systems associated with elliptic curves.

作者简介

Andrey Tsiganov

St. Petersburg State University

编辑信件的主要联系方式.
Email: andrey.tsiganov@gmail.com
俄罗斯联邦, Universitetskaya nab. 7/9, St. Petersburg, 199034

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019