Combinatorial Ricci Flow for Degenerate Circle Packing Metrics


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Chow and Luo [3] showed in 2003 that the combinatorial analogue of the Hamilton Ricci flow on surfaces converges under certain conditions to Thruston’s circle packing metric of constant curvature. The combinatorial setting includes weights defined for edges of a triangulation. A crucial assumption in [3] was that the weights are nonnegative. Recently we have shown that the same statement on convergence can be proved under a weaker condition: some weights can be negative and should satisfy certain inequalities [4].

On the other hand, for weights not satisfying conditions of Chow — Luo’s theorem we observed in numerical simulation a degeneration of the metric with certain regular behaviour patterns [5]. In this note we introduce degenerate circle packing metrics, and under weakened conditions on weights we prove that under certain assumptions for any initial metric an analogue of the combinatorial Ricci flow has a unique limit metric with a constant curvature outside of singularities.

Авторлар туралы

Ruslan Pepa

Moscow Institute of International Relations

Хат алмасуға жауапты Автор.
Email: pepa@physics.msu.ru
Ресей, pr. Vernadskogo 76, Moscow, 119454

Theodore Popelensky

Faculty of Mechanics and Mathematics

Хат алмасуға жауапты Автор.
Email: popelens@mech.math.msu.su
Ресей, Leninskie Gory 1, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019