Rational integrability of trigonometric polynomial potentials on the flat torus
- 作者: Combot T.1
- 
							隶属关系: 
							- Scuola Normale Superiore
 
- 期: 卷 22, 编号 4 (2017)
- 页面: 386-407
- 栏目: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218661
- DOI: https://doi.org/10.1134/S1560354717040049
- ID: 218661
如何引用文章
详细
We consider a lattice ℒ ⊂ ℝn and a trigonometric potential V with frequencies k ∈ ℒ. We then prove a strong rational integrability condition on V, using the support of its Fourier transform. We then use this condition to prove that a real trigonometric polynomial potential is rationally integrable if and only if it separates up to rotation of the coordinates. Removing the real condition, we also make a classification of rationally integrable potentials in dimensions 2 and 3 and recover several integrable cases. After a complex change of variables, these potentials become real and correspond to generalized Toda integrable potentials. Moreover, along the proof, some of them with high-degree first integrals are explicitly integrated.
作者简介
Thierry Combot
Scuola Normale Superiore
							编辑信件的主要联系方式.
							Email: thierry.combot@u-bourgogne.fr
				                					                																			                												                	意大利, 							Piazza CavalieriPisa, 56127						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					