Superintegrable models on Riemannian surfaces of revolution with integrals of any integer degree (I)
- 作者: Valent G.1
- 
							隶属关系: 
							- Laboratoire de Physique Mathématique de Provence
 
- 期: 卷 22, 编号 4 (2017)
- 页面: 319-352
- 栏目: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218648
- DOI: https://doi.org/10.1134/S1560354717040013
- ID: 218648
如何引用文章
详细
We present a family of superintegrable (SI) systems which live on a Riemannian surface of revolution and which exhibit one linear integral and two integrals of any integer degree larger or equal to 2 in the momenta. When this degree is 2, one recovers a metric due to Koenigs.
The local structure of these systems is under control of a linear ordinary differential equation of order n which is homogeneous for even integrals and weakly inhomogeneous for odd integrals. The form of the integrals is explicitly given in the so-called “simple” case (see Definition 2). Some globally defined examples are worked out which live either in H2 or in R2.
作者简介
Galliano Valent
Laboratoire de Physique Mathématique de Provence
							编辑信件的主要联系方式.
							Email: galliano.valent@orange.fr
				                					                																			                												                	法国, 							Avenue Marius Jouveau 1, Aix-en-Provence, 13090						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					