The Hess–Appelrot case and quantization of the rotation number


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper is concerned with the Hess case in the Euler–Poisson equations and with its generalization on the pencil of Poisson brackets. It is shown that in this case the problem reduces to investigating the vector field on a torus and that the graph showing the dependence of the rotation number on parameters has horizontal segments (limit cycles) only for integer values of the rotation number. In addition, an example of a Hamiltonian system is given which possesses an invariant submanifold (similar to the Hess case), but on which the dependence of the rotation number on parameters is a Cantor ladder.

作者简介

Ivan Bizyaev

Steklov Mathematical Institute

编辑信件的主要联系方式.
Email: bizaev_90@mail.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991

Alexey Borisov

Steklov Mathematical Institute

Email: bizaev_90@mail.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991

Ivan Mamaev

Steklov Mathematical Institute

Email: bizaev_90@mail.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017