The Hess–Appelrot case and quantization of the rotation number
- 作者: Bizyaev I.A.1, Borisov A.V.1, Mamaev I.S.1
- 
							隶属关系: 
							- Steklov Mathematical Institute
 
- 期: 卷 22, 编号 2 (2017)
- 页面: 180-196
- 栏目: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218593
- DOI: https://doi.org/10.1134/S156035471702006X
- ID: 218593
如何引用文章
详细
This paper is concerned with the Hess case in the Euler–Poisson equations and with its generalization on the pencil of Poisson brackets. It is shown that in this case the problem reduces to investigating the vector field on a torus and that the graph showing the dependence of the rotation number on parameters has horizontal segments (limit cycles) only for integer values of the rotation number. In addition, an example of a Hamiltonian system is given which possesses an invariant submanifold (similar to the Hess case), but on which the dependence of the rotation number on parameters is a Cantor ladder.
作者简介
Ivan Bizyaev
Steklov Mathematical Institute
							编辑信件的主要联系方式.
							Email: bizaev_90@mail.ru
				                					                																			                												                	俄罗斯联邦, 							ul. Gubkina 8, Moscow, 119991						
Alexey Borisov
Steklov Mathematical Institute
														Email: bizaev_90@mail.ru
				                					                																			                												                	俄罗斯联邦, 							ul. Gubkina 8, Moscow, 119991						
Ivan Mamaev
Steklov Mathematical Institute
														Email: bizaev_90@mail.ru
				                					                																			                												                	俄罗斯联邦, 							ul. Gubkina 8, Moscow, 119991						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					