Persistence of regular motions for nearly integrable Hamiltonian systems in the thermodynamic limit

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A review is given of the studies aimed at extending to the thermodynamic limit stability results of Nekhoroshev type for nearly integrable Hamiltonian systems. The physical relevance of such an extension, i. e., of proving the persistence of regular (or ordered) motions in that limit, is also discussed. This is made in connection both with the old Fermi–Pasta–Ulam problem, which gave origin to such discussions, and with the optical spectral lines, the existence of which was recently proven to be possible in classical models, just in virtue of such a persistence.

作者简介

Andrea Carati

Department of Mathematics

编辑信件的主要联系方式.
Email: andrea.carati@unimi.it
意大利, Via Saldini 50, Milano, I-20133

Luigi Galgani

Department of Mathematics

Email: andrea.carati@unimi.it
意大利, Via Saldini 50, Milano, I-20133

Alberto Maiocchi

Department of Mathematics

Email: andrea.carati@unimi.it
意大利, Via Saldini 50, Milano, I-20133

Fabrizio Gangemi

DMMT

Email: andrea.carati@unimi.it
意大利, Viale Europa 11, Brescia, I-25123

Roberto Gangemi

DMMT

Email: andrea.carati@unimi.it
意大利, Viale Europa 11, Brescia, I-25123

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016