On the integrability conditions for a family of Liénard-type equations
- Авторы: Kudryashov N.A.1, Sinelshchikov D.I.1
- 
							Учреждения: 
							- Department of Applied Mathematics
 
- Выпуск: Том 21, № 5 (2016)
- Страницы: 548-555
- Раздел: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218369
- DOI: https://doi.org/10.1134/S1560354716050063
- ID: 218369
Цитировать
Аннотация
We study a family of Liénard-type equations. Such equations are used for the description of various processes in physics, mechanics and biology and also appear as travelingwave reductions of some nonlinear partial differential equations. In this work we find new conditions for the integrability of this family of equations. To this end we use an approach which is based on the application of nonlocal transformations. By studying connections between this family of Liénard-type equations and type III Painlevé–Gambier equations, we obtain four new integrability criteria. We illustrate our results by providing examples of some integrable Liénard-type equations. We also discuss relationships between linearizability via nonlocal transformations of this family of Liénard-type equations and other integrability conditions for this family of equations.
Об авторах
N. Kudryashov
Department of Applied Mathematics
							Автор, ответственный за переписку.
							Email: nakudr@gmail.com
				                					                																			                												                	Россия, 							Kashirskoe sh. 31, Moscow, 115409						
D. Sinelshchikov
Department of Applied Mathematics
														Email: nakudr@gmail.com
				                					                																			                												                	Россия, 							Kashirskoe sh. 31, Moscow, 115409						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					