Computing hyperbolic choreographies
- 作者: Montanelli H.1
- 
							隶属关系: 
							- Oxford University Mathematical Institute
 
- 期: 卷 21, 编号 5 (2016)
- 页面: 522-530
- 栏目: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218354
- DOI: https://doi.org/10.1134/S1560354716050038
- ID: 218354
如何引用文章
详细
An algorithm is presented for numerical computation of choreographies in spaces of constant negative curvature in a hyperbolic cotangent potential, extending the ideas given in a companion paper [14] for computing choreographies in the plane in a Newtonian potential and on a sphere in a cotangent potential. Following an idea of Diacu, Pérez-Chavela and Reyes Victoria [9], we apply stereographic projection and study the problem in the Poincaré disk. Using approximation by trigonometric polynomials and optimization methods with exact gradient and exact Hessian matrix, we find new choreographies, hyperbolic analogues of the ones presented in [14]. The algorithm proceeds in two phases: first BFGS quasi-Newton iteration to get close to a solution, then Newton iteration for high accuracy.
作者简介
Hadrien Montanelli
Oxford University Mathematical Institute
							编辑信件的主要联系方式.
							Email: Hadrien.Montanelli@maths.ox.ac.uk
				                					                																			                												                	英国, 							Oxford, OX2 6GG						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					