Connecting orbits of Lagrangian systems in a nonstationary force field


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study connecting orbits of a natural Lagrangian system defined on a complete Riemannian manifold subjected to the action of a nonstationary force field with potential U(q, t) = f(t)V(q). It is assumed that the factor f(t) tends to ∞ as t→±∞ and vanishes at a unique point t0 ∈ ℝ. Let X+, X denote the sets of isolated critical points of V (x) at which U(x, t) as a function of x distinguishes its maximum for any fixed t > t0 and t < t0, respectively. Under nondegeneracy conditions on points of X± we prove the existence of infinitely many doubly asymptotic trajectories connecting X and X+.

Sobre autores

Alexey Ivanov

Saint-Petersburg State University

Autor responsável pela correspondência
Email: a.v.ivanov@spbu.ru
Rússia, Universitetskaya nab. 7/9, Saint-Petersburg, 199034

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016