Global structure and geodesics for Koenigs superintegrable systems
- 作者: Valent G.1
- 
							隶属关系: 
							- Laboratoire de Physique Mathématique de Provence
 
- 期: 卷 21, 编号 5 (2016)
- 页面: 477-509
- 栏目: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218349
- DOI: https://doi.org/10.1134/S1560354716050014
- ID: 218349
如何引用文章
详细
We present a new derivation of the local structure of Koenigs metrics using a framework laid down by Matveev and Shevchishin. All of these dynamical systems allow for a potential preserving their superintegrability (SI) and most of them are shown to be globally defined on either ℝ2 or ℍ2. Their geodesic flows are easily determined thanks to their quadratic integrals. Using Carter (or minimal) quantization, we show that the formal SI is preserved at the quantum level and for two metrics, for which all of the geodesics are closed, it is even possible to compute the classical action variables and the point spectrum of the quantum Hamiltonian.
作者简介
Galliano Valent
Laboratoire de Physique Mathématique de Provence
							编辑信件的主要联系方式.
							Email: galliano.valent@orange.fr
				                					                																			                												                	法国, 							19 bis Boulevard Emile Zola, Aix-en-Provence, F-13100						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					