Local normal forms of smooth weakly hyperbolic integrable systems
- Authors: Jiang K.1
- 
							Affiliations: 
							- Institut de Mathématiques de Jussieu — Paris Rive Gauche
 
- Issue: Vol 21, No 1 (2016)
- Pages: 18-23
- Section: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218176
- DOI: https://doi.org/10.1134/S1560354716010020
- ID: 218176
Cite item
Abstract
In the smooth (C∞) category, a completely integrable system near a nondegenerate singularity is geometrically linearizable if the action generated by the vector fields is weakly hyperbolic. This proves partially a conjecture of Nguyen Tien Zung [11]. The main tool used in the proof is a theorem of Marc Chaperon [3] and the slight hypothesis of weak hyperbolicity is generic when all the eigenvalues of the differentials of the vector fields at the non-degenerate singularity are real.
About the authors
Kai Jiang
Institut de Mathématiques de Jussieu — Paris Rive Gauche
							Author for correspondence.
							Email: kai.jiang@imj-prg.fr
				                					                																			                												                	France, 							7050 Bâtiment Sophie Germain, Case 7012, Paris CEDEX 13, 75205						
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				 
  
  
  
  
  Email this article
			Email this article  Open Access
		                                Open Access Access granted
						Access granted Subscription Access
		                                		                                        Subscription Access
		                                					